Abstract
Abstract
Background
Dimensional measurements have been implemented on a variety of entities in morphological studies of the sub-axial cervical vertebral endplate. Despite great progress, little information between the mid-sagittal plane and bilateral uncinate processes has been acquired due to the lack of a reliable method to determine the para-sagittal planes. Also, few studies of this region are available. We proposed a new approach to defining the para-sagittal planes on a 3D cervical vertebral body model; in this approach, dimensions can be measured in a specific plane. The aim of this study was to assess the inter-observer and intra-observer reliability of the measurements in different sagittal planes on sub-axial cervical vertebral endplates of 3D models.
Methods
We established mid-sagittal and bilateral quarter para-sagittal planes on the 3D model of a sub-axial cervical vertebral body based on landmarks labeled on the surface. By intersecting the vertebral body with the planes, three curves located at the three para-sagittal planes were generated. Linear dimensions were measured on every curve by two observers separately, and in total, 24 sub-axial cervical spines were included in the study. The first observer (O1) performed the procedure twice with an interval of 2 weeks. The paired t test, Wilcoxon matched-pairs signed-rank test and the interclass correlation coefficient (ICC) were employed to evaluate the inter- and intra-observer reliability of the proposed method.
Results
There were no significant differences in most intra- and inter-observer comparisons, and higher non-significant proportions were found in the intra-observer comparisons than in comparisons between different observers. The interclass correlation coefficients (ICCs) in the measurements were excellent (> 0.75) in most circumstances, and the values in intra-observer comparisons were higher than those in inter-observer comparisons.
Conclusions
In this study, we proposed an approach to determine the bilateral quarter para-sagittal planes in a 3D cervical vertebral body model; the results demonstrated that the method is reproducible with high intra- and inter-observer agreement.
Funder
Joint special fund of Applied Fundamental Research of Kunming Medical University granted by Science and Technology Office of Yunnan
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery