Non-weight-bearing exercise attenuates papain-induced knee osteoarthritis in rats via the TLR4/MyD88/NF-κB signaling pathway

Author:

Wang Kewen,Zhang Xianji,Li Xin,Li Dekun,Shan Ziliang,Yao Changfeng

Abstract

Abstract Background and Aim Knee osteoarthritis (KOA) is characterized by joint wear and degeneration. Unfortunately, the medical community currently lacks effective treatment options for this disease. Suspension exercise therapy is considered an effective form of non-weight-bearing exercise for treating KOA. However, its mechanism of intervention in KOA is unclear. Therefore, this study aimed to evaluate the protective effects of non-weight-bearing exercise on rats with KOA and attempted to explore the underlying mechanisms. Methods In this study, a papain-induced KOA model was constructed, and the pathological changes in cartilage tissue were observed by hematoxylin and eosin (H&E) staining and scored according to the Mankin scoring principle. The serum levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay. Reverse transcription–quantitative polymerase chain reaction and Western blotting were used to detect the expression of mRNA and proteins in the TLR4/MyD88/NF-κB signaling pathway. Results H&E staining and Mankin score data confirmed that non-weight-bearing exercise significantly improved articular cartilage degradation compared with that in the model group. Further, we observed that non-weight-bearing exercise differentially reduced serum levels of IL-1β, IL-6, and TNF-α. Mechanistically, non-weight-bearing exercise downregulated gene and protein expression of TLR4, MyD88, and NF-κB in cartilage tissue. Conclusion Non-weight-bearing exercise resulted in the progression of KOA by modulating the TLR4/MyD88/NF-κB signaling pathway and decreasing the levels of the inflammatory cytokines IL-1β, IL-6, and TNF-α to slow down the degeneration of articular cartilage.

Funder

Natural Science Foundation of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3