Biomechanical effects of transverse connectors on total en bloc spondylectomy of the lumbar spine: a finite element analysis

Author:

Han Ye,Ren Xuehong,Liang Yijie,Ma Xiaoyong,Wang Xiaodong

Abstract

Abstract Background The influence of total en bloc spondylectomy (TES) on spinal stability is substantial, necessitating strong fixation to restore spinal stability. The transverse connector (TC) serves as a posterior spinal instrumentation that connects the left and right sides of the pedicle screw-rod system. Several studies have highlighted the potential of a TC in enhancing the stability of the fixed segments. However, contradictory results have suggested that a TC not only fails to improve the stability of the fixed segments but also might promote stress associated with internal fixation. To date, there is a lack of previous research investigating the biomechanical effects of a TC on TES. This study aimed to investigate the biomechanical effects of a TC on internal fixation during TES of the lumbar (L) spine. Methods A single-segment (L3 segment) TES was simulated using a comprehensive L spine finite element model. Five models were constructed based on the various positions of the TC, namely the intact model (L1-sacrum), the TES model without a TC, the TES model with a TC at L1–2, the TES model with a TC at L2–4, and the TES model with a TC at L4–5. Mechanical analysis of these distinct models was conducted using the Abaqus software to assess the variations in the biomechanics of the pedicle screw-rod system, titanium cage, and adjacent endplates. Results The stability of the surgical segments was found to be satisfactory across all models. Compared with the complete model, the internal fixation device exhibited the greatest constraint on overextension (95.2–95.6%), while showing the least limitation on left/right rotation (53.62–55.64%). The application of the TC had minimal effect on the stability of the fixed segments, resulting in a maximum reduction in segment mobility of 0.11° and a variation range of 3.29%. Regardless of the use of a TC, no significant changes in stress were observed for the titanium cage. In the model without the TC, the maximum von Mises stress (VMS) for the pedicle screw-rod system reached 136.9 MPa during anterior flexion. Upon the addition of a TC, the maximum VMS of the pedicle screw-rod system increased to varying degrees. The highest recorded VMS was 459.3 MPa, indicating a stress increase of 335.5%. Following the TC implantation, the stress on the adjacent endplate exhibited a partial reduction, with the maximum stress reduced by 27.6%. Conclusion The use of a TC in TES does not improve the stability of the fixed segments and instead might result in increased stress concentration within the internal fixation devices. Based on these findings, the routine utilisation of TC in TES is deemed unnecessary.

Funder

S&T Program of Hebei

Baoding City Science and Technology and Intellectual Property Bureau

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3