Development and clinical validation of deep learning for auto-diagnosis of supraspinatus tears

Author:

Guo Deming,Liu Xiaoning,Wang Dawei,Tang Xiongfeng,Qin Yanguo

Abstract

Abstract Background Accurately diagnosing supraspinatus tears based on magnetic resonance imaging (MRI) is challenging and time-combusting due to the experience level variability of the musculoskeletal radiologists and orthopedic surgeons. We developed a deep learning-based model for automatically diagnosing supraspinatus tears (STs) using shoulder MRI and validated its feasibility in clinical practice. Materials and methods A total of 701 shoulder MRI data (2804 images) were retrospectively collected for model training and internal test. An additional 69 shoulder MRIs (276 images) were collected from patients who underwent shoulder arthroplasty and constituted the surgery test set for clinical validation. Two advanced convolutional neural networks (CNN) based on Xception were trained and optimized to detect STs. The diagnostic performance of the CNN was evaluated according to its sensitivity, specificity, precision, accuracy, and F1 score. Subgroup analyses were performed to verify its robustness, and we also compared the CNN’s performance with that of 4 radiologists and 4 orthopedic surgeons on the surgery and internal test sets. Results Optimal diagnostic performance was achieved on the 2D model, from which F1-scores of 0.824 and 0.75, and areas under the ROC curves of 0.921 (95% confidence interval, 0.841–1.000) and 0.882 (0.817–0.947) were observed on the surgery and internal test sets. For the subgroup analysis, the 2D CNN model demonstrated a sensitivity of 0.33–1.000 and 0.625–1.000 for different degrees of tears on the surgery and internal test sets, and there was no significant performance difference between 1.5 and 3.0 T data. Compared with eight clinicians, the 2D CNN model exhibited better diagnostic performance than the junior clinicians and was equivalent to senior clinicians. Conclusions The proposed 2D CNN model realized the adequate and efficient automatic diagnoses of STs, which achieved a comparable performance of junior musculoskeletal radiologists and orthopedic surgeons. It might be conducive to assisting poor-experienced radiologists, especially in community scenarios lacking consulting experts.

Funder

Graduate Innovation Program of Jilin University

The 2023 Science and Technology Project of Jilin Provincial Department of Education

The National Natural Science Foundation of China

The Special Foundation for Science and Technology Innovation of Jilin

The Health Service Capacity Building Projects of Jilin Province

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3