Author:
Xie Shiming,Cui Liqiang,Liu Jinhui,Qing Peidong,Li Jingchi
Abstract
Abstract
Background
Screw loosening is a commonly reported issue following spinal screw fixation and can lead to various complications. The initial cause of screw loosening is biomechanical deterioration. Previous studies have demonstrated that modifications in screw design can impact the local biomechanical environment, specifically the stress distribution on bone-screw interfaces. There are several different designs of screw tips available for clinically used pedicle screws; however, it remains unclear whether these variations affect the local stress distribution and subsequent screw anchorage ability.
Methods
This study conducted comprehensive biomechanical research using polyurethane foam mechanical tests and corresponding numerical simulations to investigate this topic. Models of pedicle screw-fixed osteoporotic polyurethane foam were created with two different clinically used screw tip designs (flat and steep) featuring varying tip lengths, taper angles, and diameters, as well as identical flank overlap areas and thread designs. The anchorage ability of the different models was assessed through toggle and pull-out test. Additionally, numerical mechanical models were utilized to compute the stress distributions at the screw and bone-screw interfaces in the different models.
Results
Mechanical tests revealed superior anchorage ability in models utilizing flat-tipped screws. Furthermore, numerical modeling indicated improved anchorage ability and reduced stress concentration tendency in these models.
Conclusion
Changes in screw tip design can significantly impact the biomechanical anchoring capability of screws. Specifically, flatter tip pedicle screws may mitigate the risk of screw loosening by alleviating stress concentration on bone-screw interfaces.
Publisher
Springer Science and Business Media LLC