A multi-agent-based symbiotic organism search algorithm for DG coordination in electrical distribution networks

Author:

Kawambwa ShamteORCID,Mnyanghwalo Daudi

Abstract

AbstractMetaheuristic algorithms have become popular in solving engineering optimization problems due to their advantages of simple implementation and the ability to find near-optimal solutions for complex and large-scale problems. However, most applications of metaheuristic algorithms consider centralized design, assuming that all possible solutions are available in one machine or controller. In some applications, such as power systems, especially DG coordination, centralized design may not be efficient. This work integrates a multi-agent system (MAS) into a metaheuristic algorithm for enhanced performance. In a proposed multi-agent framework, the agent implements a metaheuristic algorithm and uses shared information with neighbours as input to optimize the solutions. In this study, a new distributed Symbiotic Organism Search (SOS) algorithm has been proposed and tested in the proposed multi-agent framework. The proposed algorithm is termed a multi-agent-based symbiotic organism search algorithm (MASOS). The MASOS has been tested and compared with other proficient algorithms through statistical analysis using benchmark functions. The results show that the proposed MASOS solves the considered benchmark functions efficiently. Then MASOS was tested for DGs coordination considering load variations in the Tanzanian electrical distribution network. The results show that the coordination of DG using the proposed algorithm reduces power loss and improves the voltage profiles of the power system.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hunter–Prey Optimization Algorithm: a review;Journal of Electrical Systems and Information Technology;2024-06-03

2. A Novel Quantum Algorithm for Solving Optimization Problems in Electrical Engineering;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21

3. Distributed Consensus Algorithms for Reliable Communication in Multi-Agent Systems;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21

4. An operational risk assessment method for petrochemical plants based on deep learning;2023-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3