Impact and recovery of forest cover following wildfire in the Northern Rocky Mountains of the United States

Author:

Epstein Margaret D.ORCID,Seielstad Carl A.,Moran Christopher J.

Abstract

Abstract Background Anthropogenic climate change is expected to catalyze forest conversion to grass and shrublands due to more extreme fire behavior and hotter and drier post-fire conditions. However, field surveys in the Northern Rocky Mountains of the United States show robust conifer regeneration on burned sites. This study utilizes a machine learning (GBM) approach to monitor canopy cover systematically on a census of burned areas in two large wilderness areas from 1985 to 2021, to contextualize these recent field surveys and create a monitoring baseline for future change. Results A predictive model was developed from coincident LiDAR and Landsat observations and used to create time series of canopy cover on 352 burned sites (individual wildfires subset by number of times burned), which were then summarized using fire impact and recovery metrics. Fire impact, defined as canopy cover loss relative to pre-fire condition, was highly correlated with burn severity (Spearman’s R = 0.70). Recovery was characterized by the following: (1) whether a burned area began gaining canopy cover and (2) how long would it take to reach pre-fire cover given observed rates of gain. Eighty-five percent of the land area studied showed evidence of recovery. Areas that are failing to recover are burning more recently than their recovering counterparts, with 60% of non-recovering sites burning for the first time after 2003. However, the 5-year probability of recovery is similar among recent burns and for those that burned earlier in the record, suggesting that they may recover with more time. Once sites begin recovering, median time to reach pre-fire cover is 40 years. Seven sites have expected recovery times greater than 200 years, six of which burned for the first time after 2006. Conclusion Overall, burned sites in wilderness areas of the Northern Rocky Mountains are broadly recovering from wildfire. However, anthropogenic climate change adds a layer of uncertainty to the future prognosis of conifer recovery. This work provides a framework for systematic monitoring into the future and establishes a baseline of impact and recovery in the mountains of western Montana and northern Idaho.

Funder

National Science Foundation EPSCOR Research Infrastructure Improvement Program

National Center for Landscape Fire Analysis, University of Montana

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3