How an unprecedented wildfire shaped tree hollow occurrence and abundance—implications for arboreal fauna

Author:

Wagner BenjaminORCID,Baker Patrick J.,Nitschke Craig R.

Abstract

Abstract Background Tree hollows are an important habitat resource used by arboreal fauna for nesting and denning. Hollows form when trees mature and are exposed to decay and physical damage. In the absence of excavating fauna, hollow formation can take up to 200 years in Australian temperate Eucalyptus forests, making tree hollows a critical but slow forming habitat feature. The increasing frequency and severity of wildfires due to climate change has led to increased concern about the landscape-scale loss of nesting space for arboreal fauna, including endangered species such as the folivorous southern greater glider (Petauroides volans). To understand patterns of nesting resource availability, we assessed drivers of hollow occurrence in southeastern Australian mixed-species Eucalyptus forests and quantified the effects of an unprecedented large-scale wildfire, the 2019/2020 Black Summer bushfires, on hollow occurrence and abundance. Results Tree size and shape, as well as site productivity and topography, were important predictors for hollow occurrence both before and after the fires. The occurrence of the southern greater glider was strongly dependent on high proportions of hollow-bearing trees. While high fire severities had a negative impact on southern greater glider occurrence, the number of hollow-dependent arboreal species was not affected. While the wildfires significantly reduced hollow abundance, we did not find significant effects on hollow occurrence. Fires altered the relationship between tree size and hollow occurrence expressed as a change in the probability of hollow occurrence, with a higher likelihood at smaller tree sizes after the fires. Conclusions Our findings suggest that post-fire nesting space may be reduced at the tree-scale, while at the stand-scale, hollow-bearing trees persist as biological legacies. These persisting trees can support the recovery of hollow-dependent arboreal fauna, such as the endangered southern greater glider by providing denning and nesting space. Hollow-bearing trees that survived the fires have the potential to form new hollows faster compared to undisturbed mature trees.

Funder

Department of Climate Change, Energy, the Environment and Water

Department of Energy, Environment and Climate Action

Australian Research Council

University of Melbourne

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3