Abstract
Abstract
Background
Offspring born to preeclamptic mothers are prone to obesity, diabetes and hypertension in later life, but still, studies investigating the underlying mechanism are limited. Here, we aimed to investigate the impact of the reduced uteroplacental perfusion (RUPP) rat preeclampsia model on offspring metabolic outcomes.
Methods
Timed pregnant Wistar rats underwent RUPP or sham surgeries on day 14 of gestation. Glucometabolic parameters were evaluated on postnatal days (PND), 14 (childhood), and 60 (young adult). In addition, intraperitoneal glucose tolerance test (IPGTT), homeostatic model assessment of insulin resistance (HOMA-IR), immunohistochemical staining for insulin in pancreatic islets, arterial blood pressure and 24-h urine protein (24hUP) excretion were performed at PND60.
Results
Male, but not female, young adult rats (PND60) of RUPP dams exhibited an impaired IPGTT, decreased circulatory insulin and weakened pancreatic insulin immunoreactivity. Compared to the male offspring of the sham group, the body mass of male RUPP offspring significantly caught up after PND42, but it was not sex-specific. RUPP pups also exhibited upregulations in glucagon (only males) and ghrelin (both sexes with a more significant increase in males) during PND14–PND60. However, in sham offspring (both sexes), glucagon levels were downregulated and ghrelin levels unchanged during PND14–PND60. The blood pressure, HOMA-IR and 24hUP values did not alter in RUPP pups.
Conclusions
The overall results suggest that maternal RUPP has negative and sex-specific impacts on insulin, glucagon and ghrelin regulations in offspring and that, as young adults, male RUPP rats may be more prone to develop obesity and diabetes.
Funder
Birjand University of Medical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Endocrinology,Gender Studies
Reference52 articles.
1. Reynolds LP, Borowicz PP, Caton JS, Crouse MS, Dahlen CR, Ward AK. Developmental programming of fetal growth and development. Vet Clin North Am Food Anim Pract. 2019;35:229–47. https://doi.org/10.1016/j.cvfa.2019.02.006.
2. Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia. 2019;62:1789–801. https://doi.org/10.1007/s00125-019-4951-9.
3. Zare-Bidaki M, Sadrinia S, Erfani S, Afkar E, Ghanbarzade N. Antimicrobial properties of amniotic and chorionic membranes: a comparative study of two human fetal sacs. J Reprod Infertil. 2017;18:218–24.
4. Wang W, Xie X, Yuan T, Wang Y, Zhao F, Zhou Z, Zhang H. Epidemiological trends of maternal hypertensive disorders of pregnancy at the global, regional, and national levels: a population-based study. BMC Pregnancy Childbirth. 2021;21:364. https://doi.org/10.1186/s12884-021-03809-2.
5. Yang Y, Wang Y, Lv Y, Ding H. Dissecting the roles of lipids in preeclampsia. Metabolites. 2022;12:590. https://doi.org/10.3390/metabo12070590.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献