Zinc oxide nanoparticle regulates the ferroptosis, proliferation, invasion and steaminess of cervical cancer by miR-506-3p/CD164 signaling

Author:

Lei Jie-Yun,Li Shuang-Xue,Li Feng,Li Hui,Lei Yuan-Sheng

Abstract

Abstract Background Cancer stem cell (CSC) and ferroptosis play critical roles in cancer development, but the underlying mechanisms remain unclear. Cervical cancer induces a great mortality and an increased incidence globally. Zinc oxide nanoparticle is the nanomaterial that has been applied in industrial products and targets multiple cancer cell types and cancer stem cells. Here, we aimed to explore the effect of ZON on CSC and ferroptosis of cervical cancer. Methods In the present study, we identified that the treatment of ZON in vitro inhibited the proliferation of cervical cancer cells. Results The ZON stimulated the apoptosis of cervical cancer cells. The tumor growth of cervical cancer cells was attenuated by ZON in the xenograft mouse model in vivo. Meanwhile, ZON represses cell invasion and migration of cervical cancer. Crucially, the sphere formation numbers were repressed by ZON. Meanwhile, the SP ratio of cervical cancer cells was inhibited by ZON. The expression of CSC markers, including Sox-2, Oct3/4, and Nanog, was suppressed by circFoxo3 inhibition. Moreover, the ferroptosis was enhanced by ZON in cervical cancer cells. About the mechanism, we observed that ZON enhanced miR-506-3p expression and CD164 was a target of miR-506-3p, in which ZON inhibited CD164 expression by promoting miR-506-3p in cervical cancer cells. We validated that CD164 reversed miR-506-3p-mediated stemness and ferroptosis in cervical cancer cells. ZON repressed stemness and reduced ferroptosis of cervical cancer cells by targeting CD164. ZON inhibits cell growth of cervical cancer in vivo by targeting CD164. Conclusions In brief, we concluded that ZON regulated the ferroptosis, proliferation, invasion, and steaminess of cervical cancer by miR-506-3p/CD164 signaling. Our finding provides new insights into the mechanism by which ZON regulates ferroptosis and steaminess of cervical cancer by a miR-506-3p/CD164 axis.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3