Predicting suitable habitats for foraging and migration in Eastern Indian Ocean pygmy blue whales from satellite tracking data

Author:

Ferreira Luciana C.,Jenner Curt,Jenner Micheline,Udyawer Vinay,Radford Ben,Davenport Andrew,Moller Luciana,Andrews-Goff Virginia,Double Mike,Thums Michele

Abstract

Abstract Background Accurate predictions of animal occurrence in time and space are crucial for informing and implementing science-based management strategies for threatened species. Methods We compiled known, available satellite tracking data for pygmy blue whales in the Eastern Indian Ocean (n = 38), applied movement models to define low (foraging and reproduction) and high (migratory) move persistence underlying location estimates and matched these with environmental data. We then used machine learning models to identify the relationship between whale occurrence and environment, and predict foraging and migration habitat suitability in Australia and Southeast Asia. Results Our model predictions were validated by producing spatially varying accuracy metrics. We identified the shelf off the Bonney Coast, Great Australian Bight, and southern Western Australia as well as the slope off the Western Australian coast as suitable habitat for migration, with predicted foraging/reproduction suitable habitat in Southeast Asia region occurring on slope and in deep ocean waters. Suitable foraging habitat occurred primarily on slope and shelf break throughout most of Australia, with use of the continental shelf also occurring, predominanly in South West and Southern Australia. Depth of the water column (bathymetry) was consistently a top predictor of suitable habitat for most regions, however, dynamic environmental variables (sea surface temperature, surface height anomaly) influenced the probability of whale occurrence. Conclusions Our results indicate suitable habitat is related to dynamic, localised oceanic processes that may occur at fine temporal scales or seasonally. An increase in the sample size of tagged whales is required to move towards developing more dynamic distribution models at seasonal and monthly temporal scales. Our validation metrics also indicated areas where further data collection is needed to improve model accuracy. This is of particular importance for pygmy blue whale management, since threats (e.g., shipping, underwater noise and artificial structures) from the offshore energy and shipping industries will persist or may increase with the onset of an offshore renewable energy sector in Australia.

Funder

Woodside

Australian Institute of Marine Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3