Evaluation of dehydration mechanism during heating of hydrous asteroids based on mineralogical and chemical analysis of naturally and experimentally heated CM chondrites

Author:

Nakato Aiko,Nakamura Tomoki,Kitajima Fumio,Noguchi Takaaki

Abstract

Abstract Based on the evidence derived from spectroscopic observation and meteorite analysis, some hydrous asteroids were heated and dehydrated for a certain period of time after aqueous alteration. In order to reproduce the dehydration processes, we experimentally heated Murchison CM chondrite at 600°C for 1 h (600°C/1 h), 600°C/96 h, 900°C/1 h, and 900°C/96 h under controlled oxygen partial pressures. The experimental products were compared with Belgica (B-)7904 CM chondrite, a meteorite from a dehydrated asteroid in terms of characteristic mineralogical and compositional properties. B-7904 shows properties intermediate between the two experimental products heated at 900°C/1 h and 900°C/96 h. In addition, the presence or the absence of some temperature-sensitive minerals in B-7904 suggests that it experienced heating at a temperature higher than 700°C but lower than 890°C. The duration of heating, based on the diffusion time needed to achieve the Fe-Mg zoning profile in olivine in B-7904, was estimated to be between 10 and 103 days at 700°C and between 1 to 102 h at 890°C. The obtained durations are much shorter than those expected from the internal heating model which requires prolonged heating over million years. Therefore, it is unlikely that the short-lived radionuclide of 26Al is a heat source for the dehydration of B-7904. Instead, short-duration local heating, such as that from impacts or solar radiation, is a more promising heat source.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Reference50 articles.

1. Akai, J., Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites, Geochim. Cosmochim. Acta, 52, 1593–1599, 1988.

2. Akai, J., Mineralogical evidence of heating events in carbonaceous chondrites, Y-86720 and Y-82162, Proc. NIPR Symp. Antarctic Meteor., 3, 55–68, 1990.

3. Akai, J., TTT-diagram of serpentine and saponite, and estimation of meta-morphic heating degree of Antarctic carbonaceous chondrite, Proc. NIPR Symp. Antarctic Meteor., 5, 120–135, 1992.

4. Akai, J. and T. Sekine, Shock effects experiments on serpentine and thermal metamorphic conditions in Antarctic carbonaceous chondrite, Proc. NIPR Symp. Antarctic Meteor., 7, 101–109, 1994.

5. Beyssac, O., B. Goffé, C. Chopin, and J. N. Rouzaud, Raman spectra of carbonaceous material in metasediments: a new geothermometer, J. Metamorphic Geol., 20, 859–871, 2002.

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3