Abstract
Abstract
Introduction
Conflicting results persist regarding the effectiveness of robotic-assisted gait training (RAGT) for functional gait recovery in post-stroke survivors. We used several machine learning algorithms to construct prediction models for the functional outcomes of robotic neurorehabilitation in adult patients.
Methods and materials
Data of 139 patients who underwent Lokomat training at Taipei Medical University Hospital were retrospectively collected. After screening for data completeness, records of 91 adult patients with acute or chronic neurological disorders were included in this study. Patient characteristics and quantitative data from Lokomat were incorporated as features to construct prediction models to explore early responses and factors associated with patient recovery.
Results
Experimental results using the random forest algorithm achieved the best area under the receiver operating characteristic curve of 0.9813 with data extracted from all sessions. Body weight (BW) support played a key role in influencing the progress of functional ambulation categories. The analysis identified negative correlations of BW support, guidance force, and days required to complete 12 Lokomat sessions with the occurrence of progress, while a positive correlation was observed with regard to speed.
Conclusions
We developed a predictive model for ambulatory outcomes based on patient characteristics and quantitative data on impairment reduction with early-stage robotic neurorehabilitation. RAGT is a customized approach for patients with different conditions to regain walking ability. To obtain a more-precise and clearer predictive model, collecting more RAGT training parameters and analyzing them for each individual disorder is a possible approach to help clinicians achieve a better understanding of the most efficient RAGT parameters for different patients.
Trial registration: Retrospectively registered.
Funder
Ministry of Science and Technology, Taiwan
Ministry of Education, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference36 articles.
1. Katan M, Luft A. Global burden of stroke. Semin Neurol. 2018;38(2):208–11.
2. Rice DB, McIntyre A, Mirkowski M, Janzen S, Viana R, Britt E, et al. Patient-centered goal setting in a hospital-based outpatient stroke rehabilitation center. PM R. 2017;8(9):856–65.
3. Rose DK, Nadeau SE, Wu SS, Tilson JK, Dobkin BH, Pei QL, et al. Locomotor training and strength and balance exercises for walking recovery after stroke: response to number of training sessions. Phys Ther. 2017;97(11):1066–74.
4. Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549–55.
5. Iosa M, Morone G, Cherubini A, Paolucci S. The three laws of neurorobotics: a review on what neurorehabilitation robots should do for patients and clinicians. J Med Biol Eng Volume. 2016;9:1–11.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献