Detecting the symptoms of Parkinson’s disease with non-standard video

Author:

Mifsud Joseph,Embry Kyle R.,Macaluso Rebecca,Lonini Luca,Cotton R. James,Simuni Tanya,Jayaraman Arun

Abstract

Abstract Background Neurodegenerative diseases, such as Parkinson’s disease (PD), necessitate frequent clinical visits and monitoring to identify changes in motor symptoms and provide appropriate care. By applying machine learning techniques to video data, automated video analysis has emerged as a promising approach to track and analyze motor symptoms, which could facilitate more timely intervention. However, existing solutions often rely on specialized equipment and recording procedures, which limits their usability in unstructured settings like the home. In this study, we developed a method to detect PD symptoms from unstructured videos of clinical assessments, without the need for specialized equipment or recording procedures. Methods Twenty-eight individuals with Parkinson’s disease completed a video-recorded motor examination that included the finger-to-nose and hand pronation-supination tasks. Clinical staff provided ground truth scores for the level of Parkinsonian symptoms present. For each video, we used a pre-existing model called PIXIE to measure the location of several joints on the person’s body and quantify how they were moving. Features derived from the joint angles and trajectories, designed to be robust to recording angle, were then used to train two types of machine-learning classifiers (random forests and support vector machines) to detect the presence of PD symptoms. Results The support vector machine trained on the finger-to-nose task had an F1 score of 0.93 while the random forest trained on the same task yielded an F1 score of 0.85. The support vector machine and random forest trained on the hand pronation-supination task had F1 scores of 0.20 and 0.33, respectively. Conclusion These results demonstrate the feasibility of developing video analysis tools to track motor symptoms across variable perspectives. These tools do not work equally well for all tasks, however. This technology has the potential to overcome barriers to access for many individuals with degenerative neurological diseases like PD, providing them with a more convenient and timely method to monitor symptom progression, without requiring a structured video recording procedure. Ultimately, more frequent and objective home assessments of motor function could enable more precise telehealth optimization of interventions to improve clinical outcomes inside and outside of the clinic.

Funder

Michael J. Fox Foundation for Parkinson's Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3