Disentangling the link between zebrafish diet, gut microbiome succession, and Mycobacterium chelonae infection

Author:

Sieler Michael J.,Al-Samarrie Colleen E.,Kasschau Kristin D.,Varga Zoltan M.,Kent Michael L.,Sharpton Thomas J.

Abstract

Abstract Background Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome’s important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (129- and 214-day-old) zebrafish fed each diet throughout their lifespan. Results Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated how 214-day-old fish microbiome compositions respond to exposure of a common laboratory pathogen, Mycobacterium chelonae, and whether these responses differ as a function of diet. Our analysis finds that diet determines the manner in which the zebrafish gut microbiome responds to M. chelonae exposure, especially for moderate and low abundance taxa. Moreover, histopathological analysis finds that male fish fed different diets are differentially infected by M. chelonae. Conclusions Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.

Funder

National Science Foundation

National Institute of Environmental Health Sciences

Office of Research Infrastructure Programs, National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3