Survey of rumen microbiota of domestic grazing yak during different growth stages revealed novel maturation patterns of four key microbial groups and their dynamic interactions

Author:

Guo Wei,Zhou Mi,Ma Tao,Bi Sisi,Wang Weiwei,Zhang Ying,Huang Xiaodan,Guan Le LuoORCID,Long Ruijun

Abstract

Abstract Background The development and maturation of rumen microbiota across the lifetime of grazing yaks remain unexplored due to the varied lifestyles and feed types of yaks as well as the challenges of obtaining samples. In addition, the interactions among four different rumen microbial groups (bacteria, archaea, fungi and protozoa) in the rumen of yak are not well defined. In this study, the rumen microbiota of full-grazing yaks aged 7 days to 12 years old was assessed to determine the maturation patterns of these four microbial groups and the dynamic interactions among them during different growth stages. Results The rumen microbial groups (bacteria, archaea, protozoa and fungi) varied through the growth of yaks from neonatal (7 days) to adult (12 years), and the bacterial and archaeal groups were more sensitive to changes in growth stages compared to the two eukaryotic microbial groups. The age-discriminatory taxa within each microbial group were identified with the random forest model. Among them, Olsenella (bacteria), Group 10 sp., belonging to the family Methanomassiliicoccaceae (archaea), Orpinomyces (fungi), and Dasytricha (protozoa) contributed the most to discriminating the age of the rumen microbiota. Moreover, we found that the rumen archaea reached full maturation at 5 approximately years of age, and the other microbial groups matured between 5 and 8 years of age. The intra-interactions patterns and keystone species within each microbial group were identified by network analysis, and the inter-interactions among the four microbial groups changed with growth stage. Regarding the inter-interactions among the four microbial groups, taxa from bacteria and protozoa, including Christensenellaceae R-7 group, Prevotella 1, Trichostomatia, Ruminococcaceae UCG-014 and Lachnospiraceae, were the keystone species in the network based on betweenness centrality scores. Conclusions This study depicted a comprehensive view of rumen microbiota changes in different growth stages of grazing yaks. The results revealed the unique microbiota maturation trajectory and the intra- and inter-interactions among bacteria, archaea, fungi and protozoa in the rumen of grazing yaks across the lifetime of yaks. The information obtained in this study is vital for the future development of strategies to manipulate rumen microbiota in grazing yaks for better growth and performance in the harsh Qinghai-Tibetan Plateau ecosystem.

Funder

National Natural Science Foundation of China

Chinese Government Scholarship

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3