Abstract
Abstract
Background
One of the greatest impediments to global small ruminant production is infection with the gastrointestinal parasite, Haemonchus contortus. In recent years there has been considerable interest in the gut microbiota and its impact on health. Relatively little is known about interactions between the gut microbiota and gastrointestinal tract pathogens in sheep. Thus, this study was undertaken to investigate the link between the faecal microbiota of sheep, as a sample representing the gastrointestinal microbiota, and infection with H. contortus.
Results
Sheep (n = 28) were experimentally inoculated with 14,000 H. contortus infective larvae. Faecal samples were collected 4 weeks prior to and 4 weeks after infection. Microbial analyses were conducted using automated ribosomal intergenic spacer analysis (ARISA) and 16S rRNA gene sequencing. A comparison of pre-infection microbiota to post-infection microbiota was conducted. A high parasite burden associated with a relatively large change in community composition, including significant (p ≤ 0.001) differences in the relative abundances of Firmicutes and Bacteroidetes following infection. In comparison, low parasite burden associated with a smaller change in community composition, with the relative abundances of the most abundant phyla remaining stable. Interestingly, differences were observed in pre-infection faecal microbiota in sheep that went on to develop a high burden of H. contortus infection (n = 5) to sheep that developed a low burden of infection (n = 5). Differences observed at the community level and also at the taxa level, where significant (p ≤ 0.001) in relative abundance of Bacteroidetes (higher in high parasite burden sheep) and Firmicutes (lower in high parasite burden sheep).
Conclusions
This study reveals associations between faecal microbiota and high or low H. contortus infection in sheep. Further investigation is warranted to investigate causality and the impact of microbiome manipulation.
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. Piedrafita D, Raadsma HW, Gonzalez J, Meeusen E. Increased production through parasite control: can ancient breeds of sheep teach us new lessons? Trends Parasitol. 2010;26:568–73.
2. McRae KM, Stear MJ, Good B, Keane OM. The host immune response to gastrointestinal nematode infection in sheep. Parasite Immunol. 2015;37:605–13.
3. Sackett D, Holmes, P, Abbott, K and Barber, M. Assessing the economic cost of endemic disease on the profitability of Australian beef cattle and sheep producers. Meat & Livestock Australia, North Sydney. 2006. https://www.mla.com.au/Research-and-development/Search-RD-reports/RD-report-details/Animal-Health-and-Biosecurity/Assessing-the-economic-cost-of-endemic-disease-on-the-profitability-of-Australian-beef-cattle-and-sheep-producers/120#. Accessed 21 August 2019.
4. Anonymous. DNA test to revolutionise sheep worm control. 2008. https://csiropedia.csiro.au/dna-test-to-revolutionise-sheep-worm-control/. Accessed 21 August 2019.
5. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005;102:11070–5.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献