Machine learning models for predicting unscheduled return visits to an emergency department: a scoping review

Author:

Lee Yi-Chih,Ng Chip-Jin,Hsu Chun-Chuan,Cheng Chien-Wei,Chen Shou-Yen

Abstract

Abstract Background Unscheduled return visits (URVs) to emergency departments (EDs) are used to assess the quality of care in EDs. Machine learning (ML) models can incorporate a wide range of complex predictors to identify high-risk patients and reduce errors to save time and cost. However, the accuracy and practicality of such models are questionable. This review compares the predictive power of multiple ML models and examines the effects of multiple research factors on these models’ performance in predicting URVs to EDs. Methods We conducted the present scoping review by searching eight databases for data from 2010 to 2023. The criteria focused on eligible articles that used ML to predict ED return visits. The primary outcome was the predictive performances of the ML models, and results were analyzed on the basis of intervals of return visits, patient population, and research scale. Results A total of 582 articles were identified through the database search, with 14 articles selected for detailed analysis. Logistic regression was the most widely used method; however, eXtreme Gradient Boosting generally exhibited superior performance. Variations in visit interval, target group, and research scale did not significantly affect the predictive power of the models. Conclusion This is the first study to summarize the use of ML for predicting URVs in ED patients. The development of practical ML prediction models for ED URVs is feasible, but improving the accuracy of predicting ED URVs to beyond 0.75 remains a challenge. Including multiple data sources and dimensions is key for enabling ML models to achieve high accuracy; however, such inclusion could be challenging within a limited timeframe. The application of ML models for predicting ED URVs may improve patient safety and reduce medical costs by decreasing the frequency of URVs. Further research is necessary to explore the real-world efficacy of ML models.

Funder

Chang Gung Memorial Hospital

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3