Unrooted unordered homeomorphic subtree alignment of RNA trees

Author:

Milo Nimrod,Zakov Shay,Katzenelson Erez,Bachmat Eitan,Dinitz Yefim,Ziv-Ukelson Michal

Abstract

Abstract We generalize some current approaches for RNA tree alignment, which are traditionally confined to ordered rooted mappings, to also consider unordered unrooted mappings. We define the Homeomorphic Subtree Alignment problem (HSA), and present a new algorithm which applies to several modes, combining global or local, ordered or unordered, and rooted or unrooted tree alignments. Our algorithm generalizes previous algorithms that either solved the problem in an asymmetric manner, or were restricted to the rooted and/or ordered cases. Focusing here on the most general unrooted unordered case, we show that for input trees T and S, our algorithm has an O(n T n S  + min(d T ,d S )L T L S ) time complexity, where n T ,L T  and d T are the number of nodes, the number of leaves, and the maximum node degree in T, respectively (satisfying d T  ≤ L T  ≤ n T ), and similarly for n S ,L S  and d S  with respect to the tree S. This improves the time complexity of previous algorithms for less general variants of the problem. In order to obtain this time bound for HSA, we developed new algorithms for a generalized variant of the Min-Cost Bipartite Matching problem (MCM), as well as to two derivatives of this problem, entitled All-Cavity-MCM and All-Pairs-Cavity-MCM. For two input sets of size n and m, where n ≤ m, MCM and both its cavity derivatives are solved in O(n 3 + n m) time, without the usage of priority queues (e.g. Fibonacci heaps) or other complex data structures. This gives the first cubic time algorithm for All-Pairs-Cavity-MCM, and improves the running times of MCM and All-Cavity-MCM problems in the unbalanced case where n ≪ m. We implemented the algorithm (in all modes mentioned above) as a graphical software tool which computes and displays similarities between secondary structures of RNA given as input, and employed it to a preliminary experiment in which we ran all-against-all inter-family pairwise alignments of RNAse P and Hammerhead RNA family members, exposing new similarities which could not be detected by the traditional rooted ordered alignment approaches. The results demonstrate that our approach can be used to expose structural similarity between some RNAs with higher sensitivity than the traditional rooted ordered alignment approaches. Source code and web-interface for our tool can be found in http://www.cs.bgu.ac.il/\~negevcb/FRUUT.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3