Author:
Dulta Kanika,Koşarsoy Ağçeli Gözde,Chauhan Parveen,Jasrotia Rohit,Chauhan P. K.,Ighalo Joshua O.
Abstract
AbstractRhizome extract of Bergenia ciliata was used as a bio-functional reducing material for the green synthesis of copper oxide nanoparticles (CuO NPs). CuO NPs were characterized using ultraviolet–visible spectroscopy, Fourier transforms infrared spectroscopy, X-ray diffraction (XRD), dynamic light scattering, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). XRD analysis revealed the monoclinic phase of synthesized CuO NPs with an average particle size of 20 nm. Spherical shaped nanoscale CuO particles were observed by EDX and SEM confirming the Cu and O presence in the synthesized NPs. CuO NPs showed antibacterial effects against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhi. The antioxidant effect was measured and IC50 values for 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl and Ferric reducing antioxidant power assays were found to be 91.2, 72.4 and 109 μg mL− 1 respectively. Under sunlight, the CuO NPs reported extraordinary photocatalytic activity against Methylene Blue and Methyl Red degradation with efficiencies of 92–85%. CuO NPs have excellent potential application for the photocatalytic degradation of organic pollutants and in the development of antibacterial materials. This study offers new insights in the field of inexpensive and green synthesis-based antimicrobial effective CuO photocatalysts from B. ciliata to remove harmful dyes from industrial-based waters with high degradation efficiency, which is environmentally friendly.
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Reference40 articles.
1. Li CL, Tan HB, Lin JJ, Luo XL, Wang SP, You J, et al. Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today 2018;21:91–105.
2. Ighalo JO, Sagboye PA, Umenweke G, Ajala OJ, Omoarukhe FO, Adeyanju CA, et al. CuO nanoparticles (CuO NPs) for water treatment: a review of recent advances. Environ Nanotechno Monit Manage 2021;15:100443.
3. Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract – a comprehensive study. Mat Sci Eng C-Mater 2016;58:359–65.
4. Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem 2012;14:1322–34.
5. Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ. Nanoparticles applied to plant science: a review. Talanta 2015;131:693–705.
Cited by
114 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献