Life cycle assessment of a 33.7 MW solar photovoltaic power plant in the context of a developing country

Author:

Badza Kodami,Soro Y. M.,Sawadogo Marie

Abstract

AbstractThis work aims to determine the Energy Payback Time (EPBT) of a 33.7 MWp grid-connected photovoltaic (PV) power plant in Zagtouli (Burkina Faso) and assess its environmental impacts using the life cycle assessment tool according to ISO 14040 and 14044 standards. A “cradle to grave” approach was used, considering 1 kWh of electricity produced and injected into the national grid over 25 years as a functional unit. In addition to the baseline scenario, the other simulated scenarios combining three variables, module technology (mono c-Si, poly c-Si, and CdTe), type of mounting structure (aluminum and steel), and end-of-life treatments (landfill and recycling) were considered. SimaPro 9.4 software and the ReCiPe 2016 Midpoint (H) evaluation method were used for the calculations considering four environmental indicators. A sensitivity analysis of the change in the electricity mix was also performed. Results showed that the EPBT of the scenarios varies between 1.47 and 1.95 years, with the shortest and longest corresponding to scenarios 4 (CdTe modules, steel mounting structure, and recycling as end-of-life treatment) and scenario 3 (mono c-Si modules, aluminum mounting structure, and recycling as end-of-life treatment), respectively. All the EPBT scenarios studied can be considered acceptable given the long lifetime of PV systems (25 years). The following environmental impact results were obtained: climate change 37–48 CO2-eq kWh-1, freshwater ecotoxicity 4–11 g 1,4-DCB kWh-1, mineral resource scarcity 0.4–0.7 g Cu-eq kWh-1 and 11–13 g oil-eq kWh-1 for fossil resource scarcity. Scenario 3 (mono c-Si modules, aluminum mounting structure, and recycling as end-of-life treatment) dominates all environmental indicators studied except freshwater ecotoxicity, which is dominated by scenario 4 (CdTe modules, steel mounting structure, and recycling as end-of-life treatment). The sensitivity analysis showed that the change in the electricity mix could reduce around 30% the EPBT, climate change, and fossil resource scarcity. Considering the environmental indicators studied, using CdTe modules manufactured in a country with a less carbon-intensive electricity mix, using galvanized steel as the mounting structure, and completely recycling components at the end of their lifetime is the most environmentally friendly scenario. However, particular attention needs to be paid to the land occupation that this plant could generate.

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Reference51 articles.

1. IEA. Africa Energy Outlook 2022. Paris: International Energy Agency; 2022.

2. IRENA. Utility-Scale Solar and Wind Areas: Burkina Faso. Abu Dhabi: International Renewable Energy Agency; 2021.

3. Moner-Girona M., Bodis K, Korgo B, Huld T, Kougias I, Pinedo-Pascua I, et al. Mapping the Least-Cost Option for Rural Electrification in Burkina Faso – Scaling-up Renewable Energies. Brussels: European Commission; 2017.

4. Moner-Girona M, Bódis K, Huld T, Kougias I, Szabo S. Universal access to electricity in Burkina Faso: scaling-up renewable energy technologies. Environ Res Lett. 2016;11:084010.

5. Kizilcec V, Parikh P. Solar home systems: A comprehensive literature review for Sub-Saharan Africa. Energy Sustain Dev. 2020;58:78–89.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3