Life history traits of the Chinese minnow Rhynchocypris oxycephalus in the upper branch of Yangtze River, China

Author:

Liang Yangyang,Sui Xiaoyun,Chen Yifeng,Jia Yintao,He Dekui

Abstract

Abstract Background Study of the life history traits of any species plays an essential role for understanding their relationship with the surrounding environment and scientific management. The Chinese minnow Rhynchocypris oxycephalus, an ecologically and economically important species which was widely distributed in East Asia, is currently diminishing. In the present study, we depicted the main life history traits of R. oxycephalus for the first time. Results A total of 442 individuals were collected from April 2012 to March 2013, with total length (TL) ranging from 32.2 to 158.0 mm. The otolith (lapillus) was proved suitable for age determination. Moreover, the results from marginal increment ratio (MIR) analyses demonstrated its unusual growth pattern: two pairs of opaque and transparent bands were formed each year, which might provide some implications for the age determination of other species. The maximum age for females (4 years) was higher than for males (3 years), while 1- and 2-year-old individuals dominated the population. Both females and males reached maturity at 1 year, and the TL at first maturity was 78.8 mm for females and 60.3 mm for males. Obvious sexual dimorphism was observed as females growing faster and larger than males after maturity. As a multiple spawner, R. oxycephalus releases batches of eggs from April to August. The fecundity of R. oxycephalus was higher, and the size of eggs was larger than that of its closely related species. Conclusions R. oxycephalus is a short-lived, fast-growing, highly fecund, and early-maturing species; therefore, even a short recovery time after overexploitation or disturbance would be of great use for their restoration. Some life history traits of R. oxycephalus demonstrate obvious differences with its closely related species, indicating that latitude and local environment conditions are important selective forces for this species.

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3