Non-singular straight dislocations in anisotropic crystals

Author:

Lazar Markus,Po Giacomo

Abstract

AbstractA non-singular dislocation theory of straight dislocations in anisotropic crystals is derived using simplified anisotropic incompatible first strain gradient elasticity theory. Based on the non-singular theory of dislocations for anisotropic crystals, all dislocation key-formulas of straight dislocations are derived in generalized plane strain, for the first time. In this model, the singularity of the dislocation fields at the dislocation core is regularized owing to the nonlocal nature of strain gradient elasticity. The non-singular dislocation fields of straight dislocations are obtained in terms of two-dimensional anisotropic Green functions of simplified anisotropic strain gradient elasticity. All necessary Green functions, including the two-dimensional Green tensor of the twofold anisotropic Helmholtz-Navier operator and the two-dimensional $$\varvec{F}$$ F -tensor of generalized plane strain, are derived as sum of the classical part and a gradient part in terms of Meijer G-functions. Among others, we calculate the regularization of the Barnett solution for the elastic distortion of straight dislocations in an anisotropic crystal. In the framework of simplified anisotropic first strain gradient elasticity, the necessary material parameters are computed for cubic materials including aluminum (Al), copper (Cu), iron (Fe) and tungsten (W) using a second nearest-neighbour modified embedded-atom-method interatomic potential. The elastic distortion and stress fields of screw and edge dislocations of $$\frac{1}{2} \langle 111\rangle$$ 1 2 111 Burgers vector in bcc iron and bcc tungsten and screw and edge dislocations of $$\frac{1}{2} \langle 110\rangle$$ 1 2 110 Burgers vector in fcc copper and fcc aluminum have been computed and presented in contour plots.

Funder

Deutsche Forschungsgemeinschaft, Germany

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anisotropic functionally graded nano-beam models and closed-form solutions in plane gradient elasticity;Applied Mathematical Modelling;2024-09

2. Gradient elasticity in Swift–Hohenberg and phase-field crystal models;Modelling and Simulation in Materials Science and Engineering;2024-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3