A taxonomy of childhood pedal cyclist injuries from latent class analysis: associations with factors pertinent to prevention

Author:

Piatt JosephORCID

Abstract

Abstract Background Studies of pedal cyclist injuries have largely focused on individual injury categories, but every region of the cyclist’s body is exposed to potential trauma. Real-world injury patterns can be complex, and isolated injuries to one body part are uncommon among casualties requiring hospitalization. Latent class analysis (LCA) may identify important patterns in heterogeneous samples of qualitative data. Methods Data were taken from the Trauma Quality Improvement Program of the American College of Surgeons for 2017. Inclusion criteria were age 18 years or less and an external cause of injury code for pedal cyclist. Injuries were characterized by Abbreviated Injury Scale codes. Injury categories and the total number of injuries served as covariates for LCA. A model was selected on the basis of the Akaike and Bayesian information criteria and the interpretability of the classes. Associations were analyzed between class membership and demographic factors, circumstantial factors, metrics of injury severity, and helmet wear. Within-class associations of helmet wear with injury severity were analyzed as well. Results There were 6151 injured pediatric pedal cyclists in the study sample. The mortality rate was 0.5%. The rate of helmet wear was 18%. LCA yielded a model with 6 classes: ‘polytrauma’ (5.5%), ‘brain’ (9.0%), ‘abdomen’ (11.0%), ‘upper limb’ (20.9%), ‘lower limb’ (12.4%), and ‘head’ (41.2%). Class membership had highly significant univariate associations with all covariates except insurance payer. Helmet wear was most common in the ‘abdomen’ class and least common in the ‘polytrauma’ and ‘brain’ classes. Within classes, there was no association of helmet wear with severity of injury. Conclusions LCA identified 6 clear and distinct patterns of injury with varying demographic and circumstantial associations that may be relevant for prevention. The rate of helmet wear was low, but it varied among classes in accordance with mechanistic expectations. LCA may be an underutilized tool in trauma epidemiology.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference22 articles.

1. Agresti A. Categorical data analysis. 3rd ed. Hoboken: Wiley; 2013.

2. American College of Surgeons. Trauma quality programs—participant use file user manual. Chicago: American College of Surgeons; 2017.

3. Bachynski K, Bateman-House A. Mandatory bicycle helmet laws in the United States: origins, context, and controversies. Am J Public Health. 2020;110(8):1198–204. https://doi.org/10.2105/AJPH.2020.305718.

4. American College of S, Committee on T. Statement on bicycle safety and the promotion of bicycle helmet use. Bull Am Coll Surg. 2014;99(9):45.

5. Dagher JH, Costa C, Lamoureux J, de Guise E, Feyz M. Comparative outcomes of traumatic brain injury from biking accidents with or without helmet use. Can J Neurol Sci. 2016;43(1):56–64. https://doi.org/10.1017/cjn.2015.281.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3