Author:
Kang Bum-Yong,Mann Ishminder K,Major John E,Rajora Om P
Abstract
Abstract
Background
Genetic maps provide an important genomic resource for understanding genome organization and evolution, comparative genomics, mapping genes and quantitative trait loci, and associating genomic segments with phenotypic traits. Spruce (Picea) genomics work is quite challenging, mainly because of extremely large size and highly repetitive nature of its genome, unsequenced and poorly understood genome, and the general lack of advanced-generation pedigrees. Our goal was to construct a high-density genetic linkage map of black spruce (Picea mariana, 2n = 24), which is a predominant, transcontinental species of the North American boreal and temperate forests, with high ecological and economic importance.
Results
We have developed a near-saturated and complete genetic linkage map of black spruce using a three-generation outbred pedigree and amplified fragment length polymorphism (AFLP), selectively amplified microsatellite polymorphic loci (SAMPL), expressed sequence tag polymorphism (ESTP), and microsatellite (mostly cDNA based) markers. Maternal, paternal, and consensus genetic linkage maps were constructed. The maternal, paternal, and consensus maps in our study consistently coalesced into 12 linkage groups, corresponding to the haploid chromosome number (1n = 1x = 12) of 12 in the genus Picea. The maternal map had 816 and the paternal map 743 markers distributed over 12 linkage groups each. The consensus map consisted of 1,111 markers distributed over 12 linkage groups, and covered almost the entire (> 97%) black spruce genome. The mapped markers included 809 AFLPs, 255 SAMPL, 42 microsatellites, and 5 ESTPs. Total estimated length of the genetic map was 1,770 cM, with an average of one marker every 1.6 cM. The maternal, paternal and consensus genetic maps aligned almost perfectly.
Conclusion
We have constructed the first high density to near-saturated genetic linkage map of black spruce, with greater than 97% genome coverage. Also, this is the first genetic map based on a three-generation outbred pedigree in the genus Picea. The genome length in P. mariana is likely to be about 1,800 cM. The genetic maps developed in our study can serve as a reference map for various genomics studies and applications in Picea a nd Pinaceae.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Neale DB, Williams CG: Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement. Can J For Res. 1991, 21: 545-554. 10.1139/x91-076.
2. Viereck LA, Johnston WF: Picea mariana (Mill.) B.S.P. - Black spruce. Conifers. Silvics of North America. Edited by: Burns RM, Honkala BH. 1990, US Dept Agric, Forest Service, Agriculture Handbook 654, Washington DC, 1: 227-237.
3. Morgenstern EK, Wang BSP: Trends in forest depletion, seed supply, and reforestation in Canada during the past four decades. For Chron. 2001, 6: 1014-1021.
4. Ohri D, Khoshoo TN: Genome size in gymnosperms. Plant Sys Evol. 1986, 153: 119-132. 10.1007/BF00989421.
5. Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE: Single tree genetic linkage analysis in conifers using haploid DNA from megagametophytes. BioTechnology. 1992, 10: 686-690. 10.1038/nbt0692-686.