Prediction of avian influenza A binding preference to human receptor using conformational analysis of receptor bound to hemagglutinin

Author:

Jongkon Nipa,Mokmak Wanwimon,Chuakheaw Daungmanee,Shaw Philip J,Tongsima Sissades,Sangma Chak

Abstract

Abstract Background It is known that the highly pathogenic avian influenza A virus H5N1 binds strongly and with high specificity to the avian-type receptor by its hemagglutinin surface protein. This specificity is normally a barrier to viral transmission from birds to humans. However, strains may emerge with mutated hemagglutinin, potentially changing the receptor binding preference from avian to human-type. This hypothesis has been proven correct, since viral isolates from Vietnam and Thailand have been found which have increased selectivity toward the human cell receptor. The change in binding preference is due to mutation, which can be computationally modelled. The aim of this study is to further explore whether computational simulation could be used as a prediction tool for host type selectivity in emerging variants. Results Molecular dynamics simulation was employed to study the interactions between receptor models and hemagglutinin proteins from H5N1 strains A/Duck/Singapore/3/97, mutated A/Duck/Singapore/3/97 (Q222L, G224S, Q222L/G224S), A/Thailand/1(KAN-1)/2004, and mutated A/Thailand/1(KAN-1)/2004 (L129V/A134V). The avian receptor was represented by Siaα(2,3)Gal substructure and human receptor by Siaα(2,6)Gal. The glycoside binding conformation was monitored throughout the simulations since high selectivity toward a particular host occurs when the sialoside bound with the near-optimized conformation. Conclusion The simulation results showed all hemagglutinin proteins used the same set of amino acid residues to bind with the glycoside; however, some mutations alter linkage preferences. Preference toward human-type receptors is associated with a positive torsion angle, while avian-type receptor preference is associated with a negative torsion angle. According to the conformation analysis of the bound receptors, we could predict the relative selectivity in accordance with in vitro experimental data when disaccharides receptor analogs were used.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3