Author:
Soares Michelle Prioli Miranda,Barchuk Angel Roberto,Simões Ana Carolina Quirino,dos Santos Cristino Alexandre,de Paula Freitas Flávia Cristina,Canhos Luísa Lange,Bitondi Márcia Maria Gentile
Abstract
Abstract
Background
The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton.
Results
Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5′-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation.
Conclusions
These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee.
Publisher
Springer Science and Business Media LLC
Reference74 articles.
1. Snodgrass RE: Anatomy of the honey bee. 1956, Ithaca: Cornell University
2. Thompson PR: Histological development of cuticle in the worker honeybee, Apis mellifera adansonii. J Apic Res. 1978, 17: 32-40.
3. Michelette ERF, Soares AEE: Characterization of preimaginal developmental stages in Africanized honey bee workers (Apis mellifera L). Apidologie. 1993, 24: 431-440. 10.1051/apido:19930410.
4. Elias-Neto M, Soares MPM, Bitondi MMG: Changes in integument structure during the imaginal molt of the honey bee. Apidologie. 2009, 40: 29-39. 10.1051/apido:2008064.
5. Hepburn HR: Structure of the integument. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Volume 3. Edited by: Kerkut GA, Gilbert LI. 1985, Oxford: Pergamon Press, 1-58.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献