Author:
Chu Zhaoqing,Li Juntao,Eshaghi Majid,Karuturi R Krishna Murthy,Lin Kui,Liu Jianhua
Abstract
Abstract
Background
DNA polymerase γ(Pol-γ) has been shown to be essential for maintenance of the mitochondrial genome (mtDNA) in the petite-positive budding yeast Saccharomyces cerevisiae. Budding yeast cells lacking mitochondria exhibit a slow-growing or petite-colony phenotype. Petite strains fail to grow on non-fermentable carbon sources. However, it is not clear whether the Pol-γ is required for mtDNA maintenance in the petite-negative fission yeast Schizosaccharomyces pombe.
Results
We show that disruption of the nuclear gene pog1
+ that encodes Pol-γ is sufficient to deplete mtDNA in S. pombe. Cells bearing pog1Δ allele require substantial growth periods to form petite colonies. Mitotracker assays indicate that pog1Δ cells are defective in mitochondrial function and EM analyses suggest that pog1Δ cells lack normal mitochondrial structures. Depletion of mtDNA in pog1Δ cells is evident from quantitative real-time PCR assays. Genome-wide expression profiles of pog1Δ and other mtDNA-less cells reveal that many genes involved in response to stimulus, energy derivation by oxidation of organic compounds, cellular carbohydrate metabolism, and energy reserve metabolism are induced. Conversely, many genes encoding proteins involved in amino acid metabolism and oxidative phosphorylation are repressed.
Conclusion
By showing that Pol-γ is essential for mtDNA maintenance and disruption of pog1
+ alters the genome-wide expression profiles, we demonstrated that cells lacking mtDNA exhibit adaptive nuclear gene expression responses in the petite-negative S. pombe.
Publisher
Springer Science and Business Media LLC
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献