Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets

Author:

Chowdhury Shankar R,King Dale E,Willing Benjamin P,Band Mark R,Beever Jonathan E,Lane Adrienne B,Loor Juan J,Marini Juan C,Rund Laurie A,Schook Lawrence B,Van Kessel Andrew G,Gaskins H Rex

Abstract

Abstract Background To gain insight into host-microbe interactions in a piglet model, a functional genomics approach was used to address the working hypothesis that transcriptionally regulated genes associated with promoting epithelial barrier function are activated as a defensive response to the intestinal microbiota. Cesarean-derived germfree (GF) newborn piglets were colonized with adult swine feces, and villus and crypt epithelial cell transcriptomes from colonized and GF neonatal piglets were compared using laser-capture microdissection and high-density porcine oligonucleotide microarray technology. Results Consistent with our hypothesis, resident microbiota induced the expression of genes contributing to intestinal epithelial cell turnover, mucus biosynthesis, and priming of the immune system. Furthermore, differential expression of genes associated with antigen presentation (pan SLA class I, B2M, TAP1 and TAPBP) demonstrated that microbiota induced immune responses using a distinct regulatory mechanism common for these genes. Specifically, gene network analysis revealed that microbial colonization activated both type I (IFNAR) and type II (IFNGR) interferon receptor mediated signaling cascades leading to enhanced expression of signal transducer and activator of transcription 1 (STAT1), STAT2 and IFN regulatory factor 7 (IRF7) transcription factors and the induction of IFN-inducible genes as a reflection of intestinal epithelial inflammation. In addition, activated RNA expression of NF-kappa-B inhibitor alpha (NFκBIA; a.k.a I-kappa-B-alpha, IKBα) and toll interacting protein (TOLLIP), both inhibitors of inflammation, along with downregulated expression of the immunoregulatory transcription factor GATA binding protein-1 (GATA1) is consistent with the maintenance of intestinal homeostasis. Conclusion This study supports the concept that the intestinal epithelium has evolved to maintain a physiological state of inflammation with respect to continuous microbial exposure, which serves to sustain a tight intestinal barrier while preventing overt inflammatory responses that would compromise barrier function.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interaction between bacterial microbiota and nematode parasite communities in sheep’s gastrointestinal tract;PLOS ONE;2024-06-27

2. Special housing arrangements;The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals;2024-03-14

3. The Gut Microbiome in Pigs and Its Impact on Animal Health;Production Diseases in Farm Animals;2024

4. Epigenetics in depression and gut-brain axis: A molecular crosstalk;Frontiers in Aging Neuroscience;2022-12-13

5. Comparative biology of germ-free and conventional poultry;Poultry Science;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3