Genomic variation in Salmonella enterica core genes for epidemiological typing
-
Published:2012-03-12
Issue:1
Volume:13
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Leekitcharoenphon Pimlapas,Lukjancenko Oksana,Friis Carsten,Aarestrup Frank M,Ussery David W
Abstract
Abstract
Background
Technological advances in high throughput genome sequencing are making whole genome sequencing (WGS) available as a routine tool for bacterial typing. Standardized procedures for identification of relevant genes and of variation are needed to enable comparison between studies and over time. The core genes--the genes that are conserved in all (or most) members of a genus or species--are potentially good candidates for investigating genomic variation in phylogeny and epidemiology.
Results
We identify a set of 2,882 core genes clusters based on 73 publicly available Salmonella enterica genomes and evaluate their value as typing targets, comparing whole genome typing and traditional methods such as 16S and MLST. A consensus tree based on variation of core genes gives much better resolution than 16S and MLST; the pan-genome family tree is similar to the consensus tree, but with higher confidence. The core genes can be divided into two categories: a few highly variable genes and a larger set of conserved core genes, with low variance. For the most variable core genes, the variance in amino acid sequences is higher than for the corresponding nucleotide sequences, suggesting that there is a positive selection towards mutations leading to amino acid changes.
Conclusions
Genomic variation within the core genome is useful for investigating molecular evolution and providing candidate genes for bacterial genome typing. Identification of genes with different degrees of variation is important especially in trend analysis.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference46 articles.
1. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit Y, Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O'Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM: Genome analysis of multiple pathogenic isolates of Streptococcus agalactia: Implications for the microbial "pan-genome". Proc Natl Acad Sci USA. 2005, 102 (39): 13950-13955. 10.1073/pnas.0506758102. 2. Binnewies TT, Motro Y, Hallin PF, Lund O, Dunn D, La T, Hampson DJ, Bellgard M, Wassenaar TM, Ussery DW: Ten years of bacterial genome sequencing: comparative-genomics- based discoveries. Funct Integr Genomics. 2006, 6: 165-185. 10.1007/s10142-006-0027-2. 3. Malorny B: New Approaches in Subspecies-level Salmonella Classification. Salmonella From Genome to Function. Edited by: Porwollik S. 2011, Norwich United Kingdom: Caister Academic Press, 1-23. 4. Lukjancenko O, Wassenaar TM, Ussery DW: Comparison of 61 Sequenced Escherichia coli Genomes. Microb Ecol. 2010, 60 (4): 708-720. 10.1007/s00248-010-9717-3. 5. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, Chantratita N, Gardete S, Tavares A, Day N, Lindsay JA, Edgeworth JD, de Lencastre H, Parkhill J, Peacock SJ, Bentley SD: Evolution of MRSA During Hospital Transmission and Intercontinental Spread. Science. 2010, 327 (5964): 469-474. 10.1126/science.1182395.
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|