Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments

Author:

Sirota-Madi Alexandra,Olender Tsviya,Helman Yael,Ingham Colin,Brainis Ina,Roth Dalit,Hagi Efrat,Brodsky Leonid,Leshkowitz Dena,Galatenko Vladimir,Nikolaev Vladimir,Mugasimangalam Raja C,Bransburg-Zabary Sharron,Gutnick David L,Lancet Doron,Ben-Jacob Eshel

Abstract

Abstract Background The pattern-forming bacterium Paenibacillus vortex is notable for its advanced social behavior, which is reflected in development of colonies with highly intricate architectures. Prior to this study, only two other Paenibacillus species (Paenibacillus sp. JDR-2 and Paenibacillus larvae) have been sequenced. However, no genomic data is available on the Paenibacillus species with pattern-forming and complex social motility. Here we report the de novo genome sequence of this Gram-positive, soil-dwelling, sporulating bacterium. Results The complete P. vortex genome was sequenced by a hybrid approach using 454 Life Sciences and Illumina, achieving a total of 289× coverage, with 99.8% sequence identity between the two methods. The sequencing results were validated using a custom designed Agilent microarray expression chip which represented the coding and the non-coding regions. Analysis of the P. vortex genome revealed 6,437 open reading frames (ORFs) and 73 non-coding RNA genes. Comparative genomic analysis with 500 complete bacterial genomes revealed exceptionally high number of two-component system (TCS) genes, transcription factors (TFs), transport and defense related genes. Additionally, we have identified genes involved in the production of antimicrobial compounds and extracellular degrading enzymes. Conclusions These findings suggest that P. vortex has advanced faculties to perceive and react to a wide range of signaling molecules and environmental conditions, which could be associated with its ability to reconfigure and replicate complex colony architectures. Additionally, P. vortex is likely to serve as a rich source of genes important for agricultural, medical and industrial applications and it has the potential to advance the study of social microbiology within Gram-positive bacteria.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference103 articles.

1. Sirota-Madi A, Brainis I, Ingham C, Helman Y, Gutnick DL, Ben-Jacob E: Paenibacillus vortex sp. nov.: proposal for a new pattern-forming species with advanced collective motility and complex colony organization. IJSEM.

2. Ben-Jacob E, Shochet O, Tenenbaum A, Avidan O: Evolution of complexity during growth of bacterial colonies. NATO Advanced Research Workshop; Santa Fe, USA. Edited by: Cladis PE, Palffy-Muhorey P. 1995, Addison-Wesley Publishing Company, 619-633.

3. Ben-Jacob E: Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment. Phil Trans R Soc Lond A. 2003, 361: 1283-1312. 10.1098/rsta.2003.1199.

4. Ben-Jacob E, Cohen I, Gutnick DL: Cooperative organization of bacterial colonies: from genotype to morphotype. Annu Rev Microbiol. 1998, 52: 779-806. 10.1146/annurev.micro.52.1.779.

5. Ash C, Priest FG, Collins MD: Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek. 1993, 64: 253-260. 10.1007/BF00873085.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3