Author:
Sirota-Madi Alexandra,Olender Tsviya,Helman Yael,Ingham Colin,Brainis Ina,Roth Dalit,Hagi Efrat,Brodsky Leonid,Leshkowitz Dena,Galatenko Vladimir,Nikolaev Vladimir,Mugasimangalam Raja C,Bransburg-Zabary Sharron,Gutnick David L,Lancet Doron,Ben-Jacob Eshel
Abstract
Abstract
Background
The pattern-forming bacterium Paenibacillus vortex is notable for its advanced social behavior, which is reflected in development of colonies with highly intricate architectures. Prior to this study, only two other Paenibacillus species (Paenibacillus sp. JDR-2 and Paenibacillus larvae) have been sequenced. However, no genomic data is available on the Paenibacillus species with pattern-forming and complex social motility. Here we report the de novo genome sequence of this Gram-positive, soil-dwelling, sporulating bacterium.
Results
The complete P. vortex genome was sequenced by a hybrid approach using 454 Life Sciences and Illumina, achieving a total of 289× coverage, with 99.8% sequence identity between the two methods. The sequencing results were validated using a custom designed Agilent microarray expression chip which represented the coding and the non-coding regions. Analysis of the P. vortex genome revealed 6,437 open reading frames (ORFs) and 73 non-coding RNA genes. Comparative genomic analysis with 500 complete bacterial genomes revealed exceptionally high number of two-component system (TCS) genes, transcription factors (TFs), transport and defense related genes. Additionally, we have identified genes involved in the production of antimicrobial compounds and extracellular degrading enzymes.
Conclusions
These findings suggest that P. vortex has advanced faculties to perceive and react to a wide range of signaling molecules and environmental conditions, which could be associated with its ability to reconfigure and replicate complex colony architectures. Additionally, P. vortex is likely to serve as a rich source of genes important for agricultural, medical and industrial applications and it has the potential to advance the study of social microbiology within Gram-positive bacteria.
Publisher
Springer Science and Business Media LLC
Reference103 articles.
1. Sirota-Madi A, Brainis I, Ingham C, Helman Y, Gutnick DL, Ben-Jacob E: Paenibacillus vortex sp. nov.: proposal for a new pattern-forming species with advanced collective motility and complex colony organization. IJSEM.
2. Ben-Jacob E, Shochet O, Tenenbaum A, Avidan O: Evolution of complexity during growth of bacterial colonies. NATO Advanced Research Workshop; Santa Fe, USA. Edited by: Cladis PE, Palffy-Muhorey P. 1995, Addison-Wesley Publishing Company, 619-633.
3. Ben-Jacob E: Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment. Phil Trans R Soc Lond A. 2003, 361: 1283-1312. 10.1098/rsta.2003.1199.
4. Ben-Jacob E, Cohen I, Gutnick DL: Cooperative organization of bacterial colonies: from genotype to morphotype. Annu Rev Microbiol. 1998, 52: 779-806. 10.1146/annurev.micro.52.1.779.
5. Ash C, Priest FG, Collins MD: Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek. 1993, 64: 253-260. 10.1007/BF00873085.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献