Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis

Author:

An Ruisheng,Sreevatsan Srinand,Grewal Parwinder S

Abstract

Abstract Background Photorhabdus and Xenorhabdus are Gram-negative, phylogenetically related, enterobacteria, forming mutualism with the entomopathogenic nematodes Heterorhabditis and Steinernema, respectively. The mutualistic bacteria living in the intestines of the nematode infective juveniles are pathogenic to the insect upon release by the nematodes into the insect hemolymph. Such a switch needs activation of genes that promote bacterial virulence. We studied in vivo gene expression in Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the white grub Rhizotrogus majalis using selective capture of transcribed sequences technique. Results A total of 40 genes in P. temperata and 39 in X. koppenhoeferi were found to be upregulated in R. majalis hemolymph at 24 h post infection. Genomic presence or upregulation of these genes specific in either one of the bacterium was confirmed by the assay of comparative hybridization, and the changes of randomly selected genes were further validated by quantitative real-time PCR. The identified genes could be broadly divided into seven functional groups including cell surface structure, regulation, virulence and secretion, stress response, intracellular metabolism, nutrient scavenging, and unknown. The two bacteria shared more genes in stress response category than any other functional group. More than 60% of the identified genes were uniquely induced in either bacterium suggesting vastly different molecular mechanisms of pathogenicity to the same insect host. In P. temperata lysR gene encoding transcriptional activator was induced, while genes yijC and rseA encoding transcriptional repressors were induced in X. koppenhoeferi. Lipopolysaccharide synthesis gene lpsE was induced in X. koppenhoeferi but not in P. temperata. Except tcaC and hemolysin related genes, other virulence genes were different between the two bacteria. Genes involved in TCA cycle were induced in P. temperata whereas those involved in glyoxylate pathway were induced in X. koppenhoeferi, suggesting differences in metabolism between the two bacteria in the same insect host. Upregulation of genes encoding different types of nutrient uptake systems further emphasized the differences in nutritional requirements of the two bacteria in the same insect host. Photorhabdus temperata displayed upregulation of genes encoding siderophore-dependent iron uptake system, but X. koppenhoeferi upregulated genes encoding siderophore-independent ion uptake system. Photorhabdus temperata induced genes for amino acid acquisition but X. koppenhoeferi upregulated malF gene, encoding a maltose uptake system. Further analyses identified possible mechanistic associations between the identified gene products in metabolic pathways, providing an interactive model of pathogenesis for each bacterium species. Conclusion This study identifies set of genes induced in P. temperata and X. koppenhoeferi upon infection of R. majalis, and highlights differences in molecular features used by these two closely related bacteria to promote their pathogenicity in the same insect host.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3