Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy

Author:

Worschech Andrea,Chen Nanhai,Yu Yong A,Zhang Qian,Pos Zoltan,Weibel Stephanie,Raab Viktoria,Sabatino Marianna,Monaco Alessandro,Liu Hui,Monsurró Vladia,Buller R Mark,Stroncek David F,Wang Ena,Szalay Aladar A,Marincola Francesco M

Abstract

Abstract Background GLV-1h68 is an attenuated recombinant vaccinia virus (VACV) that selectively colonizes established human xenografts inducing their complete regression. Results Here, we explored xenograft/VACV/host interactions in vivo adopting organism-specific expression arrays and tumor cell/VACV in vitro comparing VACV replication patterns. There were no clear-cut differences in vitro among responding and non-responding tumors, however, tumor rejection was associated in vivo with activation of interferon-stimulated genes (ISGs) and innate immune host's effector functions (IEFs) correlating with VACV colonization of the xenografts. These signatures precisely reproduce those observed in humans during immune-mediated tissue-specific destruction (TSD) that causes tumor or allograft rejection, autoimmunity or clearance of pathogens. We recently defined these common pathways in the "immunologic constant of rejection" hypothesis (ICR). Conclusion This study provides the first prospective validation of a universal mechanism associated with TSD. Thus, xenograft infection by oncolytic VACV, beyond offering a promising therapy of established cancers, may represent a reliable pre-clinical model to test therapeutic strategies aimed at modulating the central pathways leading to TSD; this information may lead to the identification of principles that could refine the treatment of cancer and chronic infection by immune stimulation or autoimmunity and allograft rejection through immune tolerance.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference66 articles.

1. Wang E, Marincola FM: Bottom up: a modular view of immunology. Immunity. 2008, 29: 9-11. 10.1016/j.immuni.2008.07.002.

2. Wang E, Worschech A, Marincola FM: The immunologic constant of rejection. Trends Immunol. 2008, 29: 256-262. 10.1016/j.it.2008.03.002.

3. Hicks AM, Riedlinger G, Willingham MC, Alexander-Miller MA, von Kap-Herr C, Pettenati MJ, et al: Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci USA. 2006, 103: 7753-7758. 10.1073/pnas.0602382103.

4. Heise CC, Williams AM, Xue S, Propst M, Kirn DH: Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res. 1999, 59: 2623-2628.

5. Gnant MF, Puhlmann M, Alexander HR, Bartlett DL: Systemic administration of a recombinant vaccinia virus expressing the cytosine deaminase gene and subsequent treatment with 5-fluorocytosine leads to tumor-specific gene expression and prolongation of survival in mice. Cancer Res. 1999, 59: 3396-3403.

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3