Microarray analysis on germfree mice elucidates the primary target of a traditional Japanese medicine juzentaihoto: acceleration of IFN-α response via affecting the ISGF3-IRF7 signaling cascade

Author:

Munakata Kaori,Takashima Kiyoe,Nishiyama Mitsue,Asano Naoko,Mase Akihito,Hioki Kyoji,Ohnishi Yasuyuki,Yamamoto Masahiro,Watanabe Kenji

Abstract

Abstract Background The traditional Japanese medicine juzentaihoto (JTX) is a pharmaceutical grade multi-herbal medicine widely used for the prevention of cancer metastasis and infection in immuno-compromized patients in Japan. The effect of JTX has been supposed to be intimately affected by the immunological properties of host and enteric microflora. The influence of JTX on the gene expression profile in the large and small intestines was investigated by microarray analyses using mice of different strains with or without enteric microflora. Results In all types of mice, including germfree (GF) animals, the genes most affected by two-week oral JTX treatment were the type 1 interferon (IFN)-related genes including Stat1, Isgf3g and Irf7, which play a critical role in the feedback loop of IFN-α production cascade. In IQI specific pathogen free (SPF) mice JTX increased the steady state level of the expression of IFN-related genes, but had the opposite effect in IQI GF and BALB/c SPF mice. Promoter analysis suggests that tandem repeated $IRFF (the promoter sequences for interferon regulatory factors) may be a primary target for JTX action. Pre-treatment of JTX accelerated the effects of an oral IFN "inducer" 2-amino-5-bromo-6-methyl-4-pyrimidinol (ABMP) (up-regulation of IFN-α production in IQI strain and down-regulation in BALB/c mice), which is in good accordance with the effect of JTX on gene expression of type 1 IFN-related genes. Conclusions Microarray analysis revealed that the target of JTX might be the transcription machinery regulating the steady-state level of genes involved in the ISGF3-IRF7 cascade, whose effect is bi-directional in a strain- and microbiota-dependent manner.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3