Author:
Nilsson Maria A,Janke Axel,Murchison Elizabeth P,Ning Zemin,Hallström Björn M
Abstract
Abstract
Background
The genome of the carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii, Order: Dasyuromorphia), was sequenced in the hopes of finding a cure for or gaining a better understanding of the contagious devil facial tumor disease that is threatening the species’ survival. To better understand the Tasmanian devil genome, we screened it for transposable elements and investigated the dynamics of short interspersed e lement (SINE) retroposons.
Results
The temporal history of Tasmanian devil SINEs, elucidated using a transposition in transposition analysis, indicates that WSINE1, a CORE-SINE present in around 200,000 copies, is the most recently active element. Moreover, we discovered a new subtype of WSINE1 (WSINE1b) that comprises at least 90% of all Tasmanian devil WSINE1s. The frequencies of WSINE1 subtypes differ in the genomes of two of the other Australian marsupial orders. A co-segregation analysis indicated that at least 66 subfamilies of WSINE1 evolved during the evolution of Dasyuromorphia. Using a substitution rate derived from WSINE1 insertions, the ages of the subfamilies were estimated and correlated with a newly established phylogeny of Dasyuromorphia. Phylogenetic analyses and divergence time estimates of mitochondrial genome data indicate a rapid radiation of the Tasmanian devil and the closest relative the quolls (Dasyurus) around 14 million years ago.
Conclusions
The radiation and abundance of CORE-SINEs in marsupial genomes indicates that they may be a major player in the evolution of marsupials. It is evident that the early phases of evolution of the carnivorous marsupial order Dasyuromorphia was characterized by a burst of SINE activity. A correlation between a speciation event and a major burst of retroposon activity is for the first time shown in a marsupial genome.
Publisher
Springer Science and Business Media LLC
Reference77 articles.
1. Wilson DE, Reeder MD: Mammal species of the world: A taxonomic and geographic reference (3rd edition). 2005, Johns Hopkins University Press,http://www.bucknell.edu/msw3/,
2. Murchison EP: Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene. 2008, 27 (Suppl 2): S19-S30.
3. McCallum H: Tasmanian devil facial tumour disease: lessons for conservation biology. Trends Ecol Evol. 2008, 23: 631-637. 10.1016/j.tree.2008.07.001.
4. Lachish S, Jones M, McCallum H: The impact of disease on the survival and population growth rate of the Tasmanian devil. J Anim Ecol. 2007, 76: 926-936. 10.1111/j.1365-2656.2007.01272.x.
5. McCallum H, Jones M, Hawkins C, Hamede R, Lachish S, Sinn DL, Beeton N, Lazenby B: Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction. Ecology. 2009, 90: 3379-3392. 10.1890/08-1763.1.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献