Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence: a case study in allotetraploid Brassica napus
-
Published:2013-05-24
Issue:1
Volume:14
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Chen Xun,Li Xuemin,Zhang Bing,Xu Jinsong,Wu Zhikun,Wang Bo,Li Haitao,Younas Muhammad,Huang Lei,Luo Yingfeng,Wu Jiangsheng,Hu Songnian,Liu Kede
Abstract
Abstract
Background
The presence of homoeologous sequences and absence of a reference genome sequence make discovery and genotyping of single nucleotide polymorphisms (SNPs) more challenging in polyploid crops.
Results
To address this challenge, we constructed reduced representation libraries (RRLs) for two Brassica napus inbred lines and their 91 doubled haploid (DH) progenies using a modified ddRADseq technique. A bioinformatics pipeline termed RFAPtools was developed to discover and genotype SNPs and presence/absence variations (PAVs). Using this pipeline, a pseudo-reference sequence (PRF) containing 180,991 sequence tags was constructed. By aligning sequence reads to the pseudo-reference sequence, allelic SNPs as well as PAVs were identified and genotyped with RFAPtools. Two parallel linkage maps, one SNP bin map containing 8,780 SNP loci and one PAV linkage map containing 12,423 dominant loci, were constructed. By aligning marker sequences to B. rapa sequence scaffolds, whose genome is available, we assigned 44 unassembled sequence scaffolds comprising 8.15 Mb onto the B. rapa chromosomes, and also identified 14 instances of misassembly and eight instances of mis-ordering sequence scaffolds.
Conclusions
These results indicate that the modified ddRADseq approach is a cost-effective and simple method to genotype tens of thousands SNPs and PAV markers in a polyploidy plant species. The results also demonstrated that RFAPtools developed in this study are powerful to mine allelic SNPs from homoeologous sequences in polyploids, therefore they are generally applicable in either diploid or polyploid species with or without a reference genome sequence.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference42 articles.
1. Craig DW, Pearson JV, Szelinger S, Sekar A, Redman M, Corneveaux JJ, Pawlowski TL, Laub T, Nunn G, Stephan DA: Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methords. 2008, 5 (10): 887-893. 10.1038/nmeth.1251. 2. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T: High-throughput genotyping by whole-genome resequencing. Genome Res. 2009, 19 (6): 1068-1076. 10.1101/gr.089516.108. 3. Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C: Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet. 2012, 44 (1): 32-39. 4. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N: Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet. 2012, 45 (1): 43-50. 10.1038/ng.2484. 5. Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X: Genome-wide association study identifies candidate genes that affect plant height in chinese elite maize (Zea mays L.) inbred lines. PLoS One. 2011, 6 (12): e29229-10.1371/journal.pone.0029229.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|