Author:
Guardia Gabriela DA,Vêncio Ricardo ZN,de Farias Cléver RG
Abstract
Abstract
Background
Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain.
Results
We have studied the OBO Relation Ontology, the UML metamodel and the UML profiling mechanism. Based on these studies, we have proposed an extension to the UML metamodel in conformance with the OBO Relation Ontology and we have defined a profile that implements the extended metamodel. Finally, we have applied the proposed UML profile in the development of a number of fragments from different ontologies. Particularly, we have considered the Gene Ontology (GO), the PRotein Ontology (PRO) and the Xenopus Anatomy and Development Ontology (XAO).
Conclusions
The use of an established and well-known graphical language in the development of biomedical ontologies provides a more intuitive form of capturing and representing knowledge than using only text-based notations. The use of the profile requires the domain expert to reason about the underlying semantics of the concepts and relationships being modeled, which helps preventing the introduction of inconsistencies in an ontology under development and facilitates the identification and correction of errors in an already defined ontology.
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. Rubin DL, Shah NH, Noy NF: Biomedical ontologies: a functional perspective. Briefings in Bioinformatics. 2007, 9: 75-90. 10.1093/bib/bbm059.
2. Bodenreider O: Biomedical Ontologies in Action: Role in Knowledge Management, Data Integration and Decision Support. Yearb Med Inform. 2009, 67-79.
3. Consortium TGO: Gene Ontology: tool for the unification of biology. Nature Genetics. 2000, 25: 25-29. 10.1038/75556.
4. Eilbeck K, Lewis S, Mungall C, Yandell M, Stein L, Durbin R, Ashburner M: The Sequence Ontology: a tool for the unification of genome annotations. Genome Biology. 2005, 6 (5): R44-10.1186/gb-2005-6-5-r44.
5. Shah N, Rubin D, Espinosa I, Montgomery K, Musen M: Annotation and query of tissue microarray data using the NCI Thesaurus. BMC Bioinformatics. 2007, 8: 296-10.1186/1471-2105-8-296.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献