Author:
Okuda Shujiro,Kawashima Shuichi,Kobayashi Kazuo,Ogasawara Naotake,Kanehisa Minoru,Goto Susumu
Abstract
Abstract
Background
Operon structures play an important role in transcriptional regulation in prokaryotes. However, there have been fewer studies on complicated operon structures in which the transcriptional units vary with changing environmental conditions. Information about such complicated operons is helpful for predicting and analyzing operon structures, as well as understanding gene functions and transcriptional regulation.
Results
We systematically analyzed the experimentally verified transcriptional units (TUs) in Bacillus subtilis and Escherichia coli obtained from ODB and RegulonDB. To understand the relationships between TUs and operons, we defined a new classification system for adjacent gene pairs, divided into three groups according to the level of gene co-regulation: operon pairs (OP) belong to the same TU, sub-operon pairs (SOP) that are at the transcriptional boundaries within an operon, and non-operon pairs (NOP) belonging to different operons. Consequently, we found that the levels of gene co-regulation was correlated to intergenic distances and gene expression levels. Additional analysis revealed that they were also correlated to the levels of conservation across about 200 prokaryotic genomes. Most interestingly, we found that functional associations in SOPs were more observed in the environmental and genetic information processes.
Conclusion
Complicated operon strucutures were correlated with genome organization and gene expression profiles. Such intricately regulated operons allow functional differences depending on environmental conditions. These regulatory mechanisms are helpful in accommodating the variety of changes that happen around the cell. In addition, such differences may play an important role in the evolution of gene order across genomes.
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Ogata H, Fujibuchi W, Goto S, Kanehisa M: A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res. 2000, 28 (20): 4021-4028. 10.1093/nar/28.20.4021.
2. Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N: The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA. 1999, 96 (6): 2896-2901. 10.1073/pnas.96.6.2896.
3. Zheng Y, Szustakowski JD, Fortnow L, Roberts RJ, Kasif S: Computational identification of operons in microbial genomes. Genome Res. 2002, 12 (8): 1221-1230. 10.1101/gr.200601.
4. Yada T, Nakao M, Totoki Y, Nakai K: Modeling and predicting transcriptional units of Escherichia coli genes using hidden Markov models. Bioinformatics. 1999, 15 (12): 987-993. 10.1093/bioinformatics/15.12.987.
5. Craven M, Page D, Shavlik J, Bockhorst J, Glasner J: A probabilistic learning approach to whole-genome operon prediction. Proc Int Conf Intell Syst Mol Biol. 2000, 8: 116-127.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献