Fibroblasts from patients with Diamond-Blackfan anaemia show abnormal expression of genes involved in protein synthesis, amino acid metabolism and cancer
-
Published:2009-09-18
Issue:1
Volume:10
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Avondo Federica,Roncaglia Paola,Crescenzio Nicoletta,Krmac Helena,Garelli Emanuela,Armiraglio Marta,Castagnoli Carlotta,Campagnoli Maria Francesca,Ramenghi Ugo,Gustincich Stefano,Santoro Claudio,Dianzani Irma
Abstract
Abstract
Background
Diamond-Blackfan anaemia (DBA) is a rare inherited red cell hypoplasia characterised by a defect in the maturation of erythroid progenitors and in some cases associated with malformations. Patients have an increased risk of solid tumors. Mutations have been found in several ribosomal protein (RP) genes, i.e RPS19, RPS24, RPS17, RPL5, RPL11, RPL35A. Studies in haematopoietic progenitors from patients show that haplo-insufficiency of an RP impairs rRNA processing and ribosome biogenesis. DBA lymphocytes show reduced protein synthesis and fibroblasts display abnormal rRNA processing and impaired proliferation.
Results
To evaluate the involvement of non-haematopoietic tissues in DBA, we have analysed global gene expression in fibroblasts from DBA patients compared to healthy controls. Microarray expression profiling using Affymetrix GeneChip Human Genome U133A 2.0 Arrays revealed that 421 genes are differentially expressed in DBA patient fibroblasts. These genes include a large cluster of ribosomal proteins and factors involved in protein synthesis and amino acid metabolism, as well as genes associated to cell death, cancer and tissue development.
Conclusion
This analysis reports for the first time an abnormal gene expression profile in a non-haematopoietic cell type in DBA. These data support the hypothesis that DBA may be due to a defect in general or specific protein synthesis.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference46 articles.
1. Lecompte O, Ripp R, Thierry JC, Moras D, Poch O: Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res. 2002, 30: 5382-5390. 10.1093/nar/gkf693. 2. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, Golub TR: Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature. 2008, 451: 335-9. 10.1038/nature06494. 3. Liu JM, Ellis SR: Ribosomes and marrow failure: coincidental association or molecular paradigm?. Blood. 2006, 107: 4583-4588. 10.1182/blood-2005-12-4831. 4. Campagnoli MF, Ramenghi U, Armiraglio M, Quarello P, Garelli E, Carando A, Avondo F, Pavesi E, Fribourg S, Gleizes PE, Loreni F, Dianzani I: RPS19 mutations in patients with Diamond-Blackfan anemia. Hum Mutat. 2008, 7: 911-920. 10.1002/humu.20752. 5. Vlachos A, Ball S, Dahl N, Alter BP, Sheth S, Ramenghi U, Meerpohl J, Karlsson S, Liu JM, Leblanc T, Paley C, Kang EM, Leder EJ, Atsidaftos E, Shimamura A, Bessler M, Glader B, Lipton JM, Participants of Sixth Annual Daniella Maria Arturi International Consensus Conference: Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008, 142: 859-876. 10.1111/j.1365-2141.2008.07269.x.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|