Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5 Mb of novel transcribed sequence via significant alternative splicing and novel genes

Author:

Farkas Michael H,Grant Gregory R,White Joseph A,Sousa Maria E,Consugar Mark B,Pierce Eric A

Abstract

Abstract Background The retina is a complex tissue comprised of multiple cell types that is affected by a diverse set of diseases that are important causes of vision loss. Characterizing the transcripts, both annotated and novel, that are expressed in a given tissue has become vital for understanding the mechanisms underlying the pathology of disease. Results We sequenced RNA prepared from three normal human retinas and characterized the retinal transcriptome at an unprecedented level due to the increased depth of sampling provided by the RNA-seq approach. We used a non-redundant reference transcriptome from all of the empirically-determined human reference tracks to identify annotated and novel sequences expressed in the retina. We detected 79,915 novel alternative splicing events, including 29,887 novel exons, 21,757 3′ and 5′ alternate splice sites, and 28,271 exon skipping events. We also identified 116 potential novel genes. These data represent a significant addition to the annotated human transcriptome. For example, the novel exons detected increase the number of identified exons by 3%. Using a high-throughput RNA capture approach to validate 14,696 of these novel transcriptome features we found that 99% of the putative novel events can be reproducibly detected. Further, 15-36% of the novel splicing events maintain an open reading frame, suggesting they produce novel protein products. Conclusions To our knowledge, this is the first application of RNA capture to perform large-scale validation of novel transcriptome features. In total, these analyses provide extensive detail about a previously uncharacterized level of transcript diversity in the human retina.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference93 articles.

1. Masland RH: Cell populations of the retina: the proctor lecture. Invest Ophthalmol Vis Sci. 2011, 52 (7): 4581-4591. 10.1167/iovs.10-7083.

2. Jadhav AP, Roesch K, Cepko CL: Development and neurogenic potential of Mueller glial cells in the vertebrate retina. Prog Retin Eye Res. 2009, 28 (4): 249-262. 10.1016/j.preteyeres.2009.05.002.

3. Antonetti DA, Klein R, Gardner TW: Diabetic retinopathy. N Engl J Med. 2012, 366 (13): 1227-1239. 10.1056/NEJMra1005073.

4. Khandhadia S, Cherry J, Lotery AJ: Age-Related Macular Degeneration Neurodegenerative Diseases. Advances in Experimental Medicine and Biology. Edited by: Ahmad SI. 2012, US: Springer, 724: 15-36. 10.1007/978-1-4614-0653-2_2.

5. Lohmann D: Retinoblastoma Diseases of DNA Repair. Advances in Experimental Medicine and Biology. Edited by: Ahmad SI. 2010, New York: Springer, 685: 220-227. 10.1007/978-1-4419-6448-9_21.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3