Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis
-
Published:2013-08-20
Issue:1
Volume:14
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Xue Lu,Cai Jin-Yang,Ma Jian,Huang Zan,Guo Ming-Xiong,Fu Lie-Zhen,Shi Yun-Bo,Li Wen-Xin
Abstract
Abstract
Background
Mouse has served as an excellent model for studying human development and diseases due to its similarity to human. Advances in transgenic and knockout studies in mouse have dramatically strengthened the use of this model and significantly improved our understanding of gene function during development in the past few decades. More recently, global gene expression analyses have revealed novel features in early embryogenesis up to gastrulation stages and have indeed provided molecular evidence supporting the conservation in early development in human and mouse. On the other hand, little information is known about the gene regulatory networks governing the subsequent organogenesis. Importantly, mouse and human development diverges during organogenesis. For instance, the mouse embryo is born around the end of organogenesis while in human the subsequent fetal period of ongoing growth and maturation of most organs spans more than 2/3 of human embryogenesis. While two recent studies reported the gene expression profiles during human organogenesis, no global gene expression analysis had been done for mouse organogenesis.
Results
Here we report a detailed analysis of the global gene expression profiles from egg to the end of organogenesis in mouse. Our studies have revealed distinct temporal regulation patterns for genes belonging to different functional (Gene Ontology or GO) categories that support their roles during organogenesis. More importantly, comparative analyses identify both conserved and divergent gene regulation programs in mouse and human organogenesis, with the latter likely responsible for the developmental divergence between the two species, and further suggest a novel developmental strategy during vertebrate evolution.
Conclusions
We have reported here the first genome-wide gene expression analysis of the entire mouse embryogenesis and compared the transcriptome atlas during mouse and human embryogenesis. Given our earlier observation that genes function in a given process tends to be developmentally co-regulated during organogenesis, our microarray data here should help to identify genes associated with mouse development and/or infer the developmental functions of unknown genes. In addition, our study might be useful for invesgtigating the molecular basis of vertebrate evolution.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference59 articles.
1. Pennisi E: Genomics. Sequence tells mouse, human genome secrets. Science. 2002, 298 (5600): 1863-1865. 10.1126/science.298.5600.1863. 2. Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE: Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 2009, 7 (5): e1000112-10.1371/journal.pbio.1000112. 3. Zorn AM, Wells JM: Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009, 25: 221-251. 10.1146/annurev.cellbio.042308.113344. 4. Assou S, Cerecedo D, Tondeur S, Pantesco V, Hovatta O, Klein B, Hamamah S, De Vos J: A gene expression signature shared by human mature oocytes and embryonic stem cells. BMC Genomics. 2009, 10: 10-10.1186/1471-2164-10-10. 5. Chen HW, Chen JJ, Yu SL, Li HN, Yang PC, Su CM, Au HK, Chang CW, Chien LW, Chen CS, Tzeng CR: Transcriptome analysis in blastocyst hatching by cDNA microarray. Hum Reprod. 2005, 20 (9): 2492-2501. 10.1093/humrep/dei084.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|