Author:
Harris Diana M,van der Krogt Zita A,Klaassen Paul,Raamsdonk Leonie M,Hage Susanne,van den Berg Marco A,Bovenberg Roel AL,Pronk Jack T,Daran Jean-Marc
Abstract
Abstract
Background
Since the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54 and the availability of genomics tools such as DNA-microarray offer new perspective.
Results
In studies on β-lactam production by P. chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillinG production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillinG high-producing strain without a functional penicillin-biosynthesis gene cluster was constructed. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillinG producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies.
Conclusion
This study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on gene expression regulation. This study provides for the first time clear-cut target genes for metabolic engineering, beyond the three genes of the β-lactam pathway.
Publisher
Springer Science and Business Media LLC
Reference87 articles.
1. Fleming A: On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenza. Exp Pathol. 1929, 10: 226-236.
2. Lein J: The Panlabs penicillin strain improvement programme. Overproduction of microbial metabolites. Edited by: Vanek Z, Hostálek Z. 1986, Boston: Buttersworth, 105-139.
3. Peñalva MA, Rowlands RT, Turner G: The optimization of penicillin biosynthesis in fungi. Trends Biotechnol. 1998, 16: 483-489. 10.1016/S0167-7799(98)01229-3.
4. Backus MP, Stauffer JF: The production and selection of a family of strains in Penicillium chrysogenum. Mycologia. 1955, 47: 429-463. 10.2307/3755661.
5. Thykaer J, Nielsen J: Metabolic engineering of beta-lactam production. Metab Eng. 2003, 5: 56-69. 10.1016/S1096-7176(03)00003-X.
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献