Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny

Author:

Singh Tiratha Raj,Tsagkogeorga Georgia,Delsuc Frédéric,Blanquart Samuel,Shenkar Noa,Loya Yossi,Douzery Emmanuel JP,Huchon Dorothée

Abstract

Abstract Background Tunicates represent a key metazoan group as the sister-group of vertebrates within chordates. The six complete mitochondrial genomes available so far for tunicates have revealed distinctive features. Extensive gene rearrangements and particularly high evolutionary rates have been evidenced with regard to other chordates. This peculiar evolutionary dynamics has hampered the reconstruction of tunicate phylogenetic relationships within chordates based on mitogenomic data. Results In order to further understand the atypical evolutionary dynamics of the mitochondrial genome of tunicates, we determined the complete sequence of the solitary ascidian Herdmania momus. This genome from a stolidobranch ascidian presents the typical tunicate gene content with 13 protein-coding genes, 2 rRNAs and 24 tRNAs which are all encoded on the same strand. However, it also presents a novel gene arrangement, highlighting the extreme plasticity of gene order observed in tunicate mitochondrial genomes. Probabilistic phylogenetic inferences were conducted on the concatenation of the 13 mitochondrial protein-coding genes from representatives of major metazoan phyla. We show that whereas standard homogeneous amino acid models support an artefactual sister position of tunicates relative to all other bilaterians, the CAT and CAT+BP site- and time-heterogeneous mixture models place tunicates as the sister-group of vertebrates within monophyletic chordates. Moreover, the reference phylogeny indicates that tunicate mitochondrial genomes have experienced a drastic acceleration in their evolutionary rate that equally affects protein-coding and ribosomal-RNA genes. Conclusion This is the first mitogenomic study supporting the new chordate phylogeny revealed by recent phylogenomic analyses. It illustrates the beneficial effects of an increased taxon sampling coupled with the use of more realistic amino acid substitution models for the reconstruction of animal phylogeny.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3