cGMP-independent nitric oxide signaling and regulation of the cell cycle

Author:

Cui Xiaolin,Zhang Jianhua,Ma Penglin,Myers Daniela E,Goldberg Ilana G,Sittler Kelly J,Barb Jennifer J,Munson Peter J,del Pilar Cintron Ana,McCoy J Philip,Wang Shuibang,Danner Robert L

Abstract

Abstract Background Regulatory functions of nitric oxide (NO) that bypass the second messenger cGMP are incompletely understood. Here, cGMP-independent effects of NO on gene expression were globally examined in U937 cells, a human monoblastoid line that constitutively lacks soluble guanylate cyclase. Differentiated U937 cells (>80% in G0/G1) were exposed to S-nitrosoglutathione, a NO donor, or glutathione alone (control) for 6 h without or with dibutyryl-cAMP (Bt2cAMP), and then harvested to extract total RNA for microarray analysis. Bt2cAMP was used to block signaling attributable to NO-induced decreases in cAMP. Results NO regulated 110 transcripts that annotated disproportionately to the cell cycle and cell proliferation (47/110, 43%) and more frequently than expected contained AU-rich, post-transcriptional regulatory elements (ARE). Bt2cAMP regulated 106 genes; cell cycle gene enrichment did not reach significance. Like NO, Bt2cAMP was associated with ARE-containing transcripts. A comparison of NO and Bt2cAMP effects showed that NO regulation of cell cycle genes was independent of its ability to interfere with cAMP signaling. Cell cycle genes induced by NO annotated to G1/S (7/8) and included E2F1 and p21/Waf1/Cip1; 6 of these 7 were E2F target genes involved in G1/S transition. Repressed genes were G2/M associated (24/27); 8 of 27 were known targets of p21. E2F1 mRNA and protein were increased by NO, as was E2F1 binding to E2F promoter elements. NO activated p38 MAPK, stabilizing p21 mRNA (an ARE-containing transcript) and increasing p21 protein; this increased protein binding to CDE/CHR promoter sites of p21 target genes, repressing key G2/M phase genes, and increasing the proportion of cells in G2/M. Conclusion NO coordinates a highly integrated program of cell cycle arrest that regulates a large number of genes, but does not require signaling through cGMP. In humans, antiproliferative effects of NO may rely substantially on cGMP-independent mechanisms. Stress kinase signaling and alterations in mRNA stability appear to be major pathways by which NO regulates the transcriptome.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3