Comparative analysis of transcriptional profiling of CD3+, CD4+ and CD8+ T cells identifies novel immune response players in T-Cell activation

Author:

Wang Min,Windgassen Dirk,Papoutsakis Eleftherios T

Abstract

Abstract Background T-cell activation is an essential step of the immune response and relies on the tightly controlled orchestration of hundreds of genes/proteins, yet the cellular and molecular events underlying this complex process are not fully understood, especially at the genome-scale. Significantly, a comparative genome-scale transcriptional analysis of two T-cell subsets (CD4+ and CD8+) against each other and against the naturally mixed population (CD3+ cells) remains unexplored. Results Comparison of the microarray-based gene expression patterns between CD3+ T cells, and the CD4+ and CD8+ subsets revealed largely conserved, but not identical, transcriptional patterns. We employed a Gene-Ontology-driven transcriptional analysis coupled with protein abundance assays in order to identify novel T-cell activation genes and cell-type-specific genes associated with the immune response. We identified potential genes involved in the communication between the two subsets (including IL23A, NR4A2, CD83, PSMB2, -8, MIF, IFI16, TNFAIP1, POU2AF1, and OTUB1) and would-be effector-function-specific genes (XCL2, SLAMF7, TNFSF4, -5, -9, CSF3, CD48 and CD244). Chemokines induced during T-cell activation, but not previously identified in T cells, include CCL20, CXCL9, -10, -11 (in all three populations), and XCL2 (preferentially in CD8+ T cells). Increased expression of other unexpected cytokines (GPI, OSM and MIF) suggests their involvement in T-cell activation with their functions yet to be examined. Differential expression of many receptors, not previously reported in the context of T-cell activation, including CCR5, CCR7, IL1R2, IL1RAP, IL6R, TNFRSF25 and TNFRSF1A, suggests their role in this immune process. Several receptors involved in TCR activation (CD3D, CD3G, TRAT1, ITGAL, ITGB1, ITGB2, CD8A and B (CD8+ T-cell specific) along with LCK, ZAP70 and TYROBP were synchronously downregulated. Members of cell-surface receptors (HLA-Ds and KLRs), none previously identified in the context of T-cell activation, were also downregulated. Conclusion This comparative genome-scale, transcriptional analysis of T-cell activation in the CD4+ and CD8+ subsets and the mixed CD3+ populations made possible the identification of many immune-response genes not previously identified in the context of T-cell activation. Significantly, it made possible to identify the temporal patterns of many previously known T-cell activation genes, and also identify genes implicated in effector functions of and communication between CD4+ and CD8+ T cells.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3