Effect of continuous light on diurnal rhythms in Cyanothece sp. ATCC 51142

Author:

Elvitigala Thanura,Stöckel Jana,Ghosh Bijoy K,Pakrasi Himadri B

Abstract

Abstract Background Life on earth is strongly affected by alternating day and night cycles. Accordingly, many organisms have evolved an internal timekeeping system with a period of approximately 24 hours. Cyanobacteria are the only known prokaryotes with robust rhythms under control of a central clock. Numerous studies have been conducted to elucidate components of the circadian clock and to identify circadian-controlled genes. However, the complex interactions between endogenous circadian rhythms and external cues are currently not well understood, and a direct and mathematical based comparison between light-mediated and circadian-controlled gene expression is still outstanding. Therefore, we combined and analyzed data from two independent microarray experiments, previously performed under alternating light-dark and continuous light conditions in Cyanothece sp. ATCC 51142, and sought to classify light responsive and circadian controlled genes. Results Fourier Score-based methods together with random permutations and False Discovery Rates were used to identify genes with oscillatory expression patterns, and an angular distance based criterion was applied to recognize transient behaviors in gene expression under constant light conditions. Compared to previously reported mathematical approaches, the combination of these methods also facilitated the detection of modified amplitudes and phase-shifts of gene expression. Our analysis showed that the majority of diurnally regulated genes, essentially those genes that are maximally expressed during the middle of the light and dark period, are in fact light responsive. In contrast, most of the circadian controlled genes are up-regulated during the beginning of the dark or subjective dark, and are greatly enriched for genes associated with energy metabolism. Many of the circadian controlled and light responsive genes are found in gene clusters within the Cyanothece sp. ATCC 51142 genome. Interestingly, in addition to cyclic expression patterns with a period of 24 hours, we also found several genes that oscillate with an ultradian period of 12 hours, a novel finding among cyanobacteria. Conclusion We demonstrate that a combination of different analytical methods significantly improved the identification of cyclic and transient gene expression in Cyanothece sp. ATCC 51142. Our analyses provide an adaptable and novel analytical tool to study gene expression in a variety of organisms with diurnal, circadian and ultradian behavior.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3