Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses

Author:

Humbert Sabrina,Subedi Sanjeena,Cohn Jonathan,Zeng Bin,Bi Yong-Mei,Chen Xi,Zhu Tong,McNicholas Paul D,Rothstein Steven J

Abstract

Abstract Background Water and nitrogen are two of the most critical inputs required to achieve the high yield potential of modern corn varieties. Under most agricultural settings however they are often scarce and costly. Fortunately, tremendous progress has been made in the past decades in terms of modeling to assist growers in the decision making process and many tools are now available to achieve more sustainable practices both environmentally and economically. Nevertheless large gaps remain between our empirical knowledge of the physiological changes observed in the field in response to nitrogen and water stresses, and our limited understanding of the molecular processes leading to those changes. Results This work examines in particular the impact of simultaneous stresses on the transcriptome. In a greenhouse setting, corn plants were grown under tightly controlled nitrogen and water conditions, allowing sampling of various tissues and stress combinations. A microarray profiling experiment was performed using this material and showed that the concomitant presence of nitrogen and water limitation affects gene expression to an extent much larger than anticipated. A clustering analysis also revealed how the interaction between the two stresses shapes the patterns of gene expression over various levels of water stresses and recovery. Conclusions Overall, this study suggests that the molecular signature of a specific combination of stresses on the transcriptome might be as unique as the impact of individual stresses, and hence underlines the difficulty to extrapolate conclusions obtained from the study of individual stress responses to more complex settings.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference33 articles.

1. Word Population Prospects: The. 2010, United Nations: Department of Economic and Social Affairs, http://www.un.org/esa/population, Revision,

2. Backlund P, Janetos A, Schimel D, Hatfield J, Boote K, Fay P, Hahn L, Izaurralde C, Kimball BA, Mader T, et al: The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States. 2008, U.S: Department of Agriculture, 362-

3. Li Y, White R, Chen D, Zhang J, Li B, Zhang Y, Huang Y, Edis R: A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecol Model. 2007, 203 (3–4): 395-423.

4. Zand-Parsa S, Sepaskhah AR: Development and evaluation of integrated water and nitrogen model for maize. Agricultural Water Management. 2006, 81 (3): 227-256. 10.1016/j.agwat.2005.03.010.

5. Di Paolo E, Rinaldi M: Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Research. 2008, 105 (3): 202-210. 10.1016/j.fcr.2007.10.004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3