Author:
Korostynski Michal,Kaminska-Chowaniec Dorota,Piechota Marcin,Przewlocki Ryszard
Abstract
Abstract
Background
Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action.
Results
Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q < 0.01) revealed inter-strain variation in the expression of ~3% of the analyzed transcripts. A combination of three methods of array pre-processing was used to compile a list of ranked transcripts covered by 1528 probe-sets significantly different between the mouse strains under comparison. Using Gene Ontology analysis, over-represented patterns of genes associated with cytoskeleton and involved in synaptic transmission were identified. Differential expression of several genes with relevant neurobiological function (e.g. GABA-A receptor alpha subunits) was validated by quantitative RT-PCR. Analysis of correlations between gene expression and behavioural data revealed connection between the level of mRNA for K homology domain containing, RNA binding, signal transduction associated 1 (Khdrbs1) and ATPase Na+/K+ alpha2 subunit (Atp1a2) with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt) gene.
Conclusion
The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Brase DA, Loh HH, Way EL: Comparison of the effects of morphine on locomotor activity, analgesia and primary and protracted physical dependence in six mouse strains. J Pharmacol Exp Ther. 1977, 201 (2): 368-374.
2. Shuster L, Webster GW, Yu G, Eleftheriou BE: A genetic analysis of the response to morphine in mice: analgesia and runnimg. Psychopharmacologia. 1975, 42 (3): 249-254. 10.1007/BF00421264.
3. Oliverio A, Castellano C: Genotype-dependent sensitivity and tolerance to morphine and heroin: dissociation between opiate-induced running and analgesia in the mouse. Psychopharmacologia. 1974, 39 (1): 13-22. 10.1007/BF00421454.
4. Eriksson K, Kiianmaa K: Genetic analysis of susceptibility to morphine addiction in inbred mice. Ann Med Exp Biol Fenn. 1971, 49 (2): 73-78.
5. Bigler ED, Eidelberg E: Nigrostriatal effects of morphine in two mouse strains. Life Sci. 1976, 19 (9): 1399-1406. 10.1016/0024-3205(76)90440-9.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献