Injectable hydrogel nanoarchitectonics with near-infrared controlled drug delivery for in situ photothermal/endocrine synergistic endometriosis therapy

Author:

Tian Wei,Wang Chenyu,Chu Ran,Ge Haiyan,Sun Xiao,Li MingjiangORCID

Abstract

Abstract Background Endometriosis is a common gynecological disease in women of childbearing age. Commonly used treatment methods, such as endocrine and surgical therapies, display poor therapeutic effects with a high relapse probability. Thus, novel treatments for endometriosis are required. Methods In our study, polydopamine (PDA), letrozole (LTZ), and agarose (AG) hydrogels were combined to construct an injectable hydrogel with near-infrared controlled drug delivery named LTZ-PDA@AG hydrogel for endometriosis treatment. The release of letrozole can be accurately controlled by the near-infrared light intensity, exposure duration, polydopamine concentration, and hydrogel composition. Meanwhile, we isolated endometrial stromal cells from endometrium in patients with endometriosis, and constructed the rats’ model of endometriosis to verify the biological effects of LTZ-PDA@AG hydrogel. Results Owing to the sufficiently deep penetration of near-infrared light, the LTZ-PDA@AG hydrogel displayed a high temperature increase for efficient photothermal therapy. In addition, high local temperatures can further enhance the diffusion and penetration of letrozole, thereby achieving excellent therapeutic effect in vivo. Importantly, the in vivo and vitro test demonstrated the capacity of the nanocomposite hydrogel for endocrine-photothermal synergistic therapy and the biocompatibility. Conclusion Our work proposes a novel concept for precision endometriosis therapy by photothermal-enhanced endocrine therapy for endometriosis, which is proposed for the first time for the treatment of endometriosis and demonstrates excellent potential for further clinical translation. Trial registration Not applicable. Graphical Abstract LTZ-PDA@AG hydrogels were synthesized and displayed a high temperature increase for efficient photothermal therapy under NIR. The present study shows the capacity of the nanocomposite hydrogel for endocrine-photothermal synergistic therapy and the biocompatibility.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Youth Innovation Technology Project of Higher School in Shandong Province

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3