An injectable, in situ forming and NIR-responsive hydrogel persistently reshaping tumor microenvironment for efficient melanoma therapy

Author:

Zhang Han,Hu Liangshan,Xiao Wei,Su Yanqiong,Cao DonglinORCID

Abstract

Abstract Background Melanoma is a highly aggressive form of skin cancer with increasing incidence and mortality rates. Chemotherapy, the primary treatment for melanoma, is limited by hypoxia-induced drug resistance and suppressed immune response at the tumor site. Modulating the tumor microenvironment (TME) to alleviate hypoxia and enhance immune response has shown promise in improving chemotherapy outcomes. Methods In this study, a novel injectable and in situ forming hydrogel named MD@SA was developed using manganese dioxide (MnO2) nanosheets pre-loaded with the chemotherapy drug doxorubicin (DOX) and mixed with sodium alginate (SA). The sustainable drug delivery, oxygen generation ability, and photothermal property of MD@SA hydrogel were characterized. The therapeutic efficacy of hydrogel was studied in B16F10 in vitro and B16F10 tumor-bearing mice in vivo. The immune effects on macrophages were analyzed by flow cytometry, real-time quantitative reverse transcription PCR, and immunofluorescence analyses. Results The MD@SA hydrogel catalyzed the tumoral hydrogen peroxide (H2O2) into oxygen, reducing the hypoxic TME, down-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and drug efflux pump P-glycoprotein (P-gp). The improved TME conditions enhanced the uptake of DOX by melanoma cells, enhancing its efficacy and facilitating the release of tumor antigens. Upon NIR irradiation, the photothermal effect of the hydrogel induced tumor apoptosis to expose more tumor antigens, thus re-educating the M2 type macrophage into the M1 phenotype. Consequently, the MD@SA hydrogel proposes an ability to constantly reverse the hypoxic and immune-inhibited TME, which eventually restrains cancer proliferation. Conclusion The injectable and in situ forming MD@SA hydrogel represents a promising strategy for reshaping the TME in melanoma treatment. By elevating oxygen levels and activating the immune response, this hydrogel offers a synergistic approach for TME regulation nanomedicine.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

The Technology Research Program of Guangzhou City

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

Reference42 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3